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Abstract

In the article “Comparison of smallest eigenvalues for fractional-order nonlo-
cal boundary value problems”, published in Advances in Dynamical Systems and
Applications, Volume 14, Number 2, pp. 189–199 (2019), an error was made con-
cerning the left boundary condition. This errata addresses that error.
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Concerning the results of the paper [3], an error was brought to the attention of the
authors by Professor Jeffrey Webb. In particular, for a Riemann–Liouville fractional
derivative problem studied via an integral equation in the space C[0, 1], only the initial
value y(0) = 0 gives a well-posed problem. As a consequence, the phrase on [3, page
192] preceding the expression for G(t, s) that states, “Extending arguments of Hender-
son and Luca [16, 19], we obtain by direct computation that the Green’s function for
(3.1)–(1.3) is given by . . .,” is in error. Namely, in each of [16] and [19], the bound-
ary condition at t = 0 involves y(0) = 0, and the computation of the Green’s function
in each of those papers does not lead to the expression for G(t, s) given on [3, page
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192]. By replacing the boundary condition in (1.3) at t = 0 by y(0) = 0 and then
deleting the corresponding terms from the expression for G(t, s) on [3, page 192] and
employing the weighted Banach space B = {y : y = tα−1v, v ∈ C[0, 1]} with norm
‖y‖ = sup

t∈[0,1]
|v(t)|, standard arguments show M,N : P \ {0} → Q, where

Q := {y = tα−1v ∈ B : y(t) > 0, t ∈ (0, 1], v(0) > 0} ⊂ P ◦,

which provides a correction for the results of [3]. Useful references supporting this
correction are [1, 2, 4–7].
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