1. Solve for X:

 \[-2X + Y = 4\]
 \[X - 2Y = -5\]

2. Two right triangles have some sides that are perpendicular to one another, as shown in the figure. Express the length X in terms of length L and angle θ.

3. What is the derivative of $f(x) = (1 + e^{2x})^5$ with respect to x?

4. If $\vec{C} = \vec{A} - \vec{B}$ for the vectors shown in the diagram at the right, what is C_x in terms of θ and the magnitudes of \vec{A} and \vec{B}?
1. Solve for X:
\[-2X + Y = 5 \]
\[X + 2Y = -5 \]

2. Two right triangles have some sides that are perpendicular to one another, as shown in the figure. Express the length R in terms of length X and angle θ.

3. What is the derivative of $f(x) = (1 + e^{5x})^2$ with respect to x?

4. If $\vec{C} = \vec{A} + \vec{B}$ for the vectors shown in the diagram at the right, what is C_x in terms of θ and the magnitudes of \vec{A} and \vec{B}?
1. Solve for A:

$$A + 2B = 4$$

$$\frac{1}{2}A + 3B = -4$$

2. Two right triangles have some sides that are perpendicular to one another, as shown in the figure. Express the length L in terms of X and θ.

3. What is the derivative of $y(t) = (2 + \sin(2t))^3$ with respect to t?

4. If $\vec{C} = \vec{A} + 2\vec{B}$ for the vectors shown in the diagram at the right, what is C_y in terms of θ and the magnitudes of \vec{A} and \vec{B}?
1. Solve for B:

\[A + 2B = -4 \]
\[\frac{1}{2}A - 3B = 4 \]

2. Two right triangles have some sides that are perpendicular to one another, as shown in the figure. Express the length L in terms of x and θ.

\[L = \sqrt{x^2 + (x \sin \theta)^2} \]

3. What is the derivative of $y(t) = (2 + \sin(3t))^2$ with respect to t?

\[y'(t) = 2(2 + \sin(3t)) \cdot 3\cos(3t) \]

4. If $\vec{C} = \vec{A} - \vec{B}$ for the vectors shown in the diagram at the right, what is C_y in terms of θ and the magnitudes of \vec{A} and \vec{B}?

\[C_y = A_y - B_y = A_y - B_y \sin \theta \]
1. \(X \) and \(T \) are BOTH negative numbers. Write the algebraic equation that is equivalent to the verbal statement “\(F \) has the same the value as twice \(X \) subtracted from \(T \).”

2. Two right triangles have some sides that are perpendicular to one another, as shown in the figure. Express the length \(x \) in terms of length \(L \) and angle \(\theta \).

3. What is the derivative of \(y(x) = (2 + \cos(2x))^3 \) with respect to \(x \)?

4. If \(\vec{C} = 2\vec{A} - \vec{B} \) for the vectors shown in the diagram at the right, what is \(C_y \) in terms of \(\theta \) and the magnitudes of \(\vec{A} \) and \(\vec{B} \)?
1. \(X \) and \(T \) are BOTH negative numbers. Write the algebraic equation that is equivalent to the verbal statement “\(F \) has the same the value as twice \(T \) added to \(X \).”

2. Two right triangles have some sides that are perpendicular to one another as shown in the figure. Express the length \(L \) in terms of length \(x \) and angle \(\theta \).

3. What is the derivative of \(y(x) = (2 + \cos(3x))^2 \) with respect to \(x \)?

4. If \(\vec{C} = 2\vec{A} - \vec{B} \) for the vectors shown in the diagram at the right, what is \(C_y \) in terms of \(\theta \) and the magnitudes of \(\vec{A} \) and \(\vec{B} \)?