Limit Cycle Bifurcations of a Special Liénard Polynomial System

Valery A. Gaiko
National Academy of Sciences of Belarus
United Institute of Informatics Problems
Surganov Str. 6, Minsk 220012, Belarus
valery.gaiko@gmail.com

Abstract
In this paper, applying a canonical system with field rotation parameters and using geometric properties of the spirals filling the interior and exterior domains of limit cycles, we solve first the problem on the maximum number of limit cycles surrounding a unique singular point for an arbitrary polynomial system. Then, by means of the same bifurcationally geometric approach, we solve the limit cycle problem for a Liénard system with cubic restoring and polynomial damping functions.

AMS Subject Classifications: 34C05, 34C07, 34C23, 37G05, 37G10, 37G15.
Keywords: Planar polynomial dynamical system, Liénard system, bifurcation, field rotation parameter, singular point, limit cycle.

1 Introduction
Liénard equations of the form
\[\ddot{x} + f(x) \dot{x} + g(x) = 0 \] (1.1)
and the corresponding dynamical systems
\[\dot{x} = y, \quad \dot{y} = -g(x) - f(x)y \] (1.2)
are considered in this paper.
There are many examples in the natural sciences and technology in which such equations and related systems are applied [1, 2, 16–24]. They are often used to model either
mechanical or electrical, or biomedical systems, and in the literature, many systems are transformed into Liénard type to aid in the investigations. They can be used, e.g., in certain mechanical systems, where $f(x)$ represents a coefficient of the damping force and $g(x)$ represents the restoring force or stiffness, when modeling wind rock phenomena and surge in jet engines [1, 21]. Such systems can be also used to model resistor-inductor-capacitor circuits with nonlinear circuit elements. Recently, e.g., the Liénard system (1.2) has been shown to describe the operation of an optoelectronics circuit that uses a resonant tunnelling diode to drive a laser diode to make an optoelectronic voltage controlled oscillator [23]. There are also some examples of using Liénard type systems in ecology and epidemiology [20].

In this paper, we suppose that system (1.2), where $g(x)$ is cubic and $f(x)$ is arbitrary polynomial, has an anti-saddle (a node or a focus, or a center) at the origin and write it in the form

$$\dot{x} = y, \quad \dot{y} = -x (1 + \beta_1 x + \beta_2 x^2) + y (\alpha_0 + \alpha_1 x + \ldots + \alpha_{2k} x^{2k}).$$ \tag{1.3}$$

Note that for $g(x) \equiv x$, by the change of variables $X = x$ and $Y = y + F(x)$, where $F(x) = \int_0^x f(s)ds$, (1.3) is reduced to an equivalent system

$$\dot{X} = Y - F(X), \quad \dot{Y} = -X$$ \tag{1.4}$$

which can be written in the form

$$\dot{x} = y, \quad \dot{y} = -x + F(y)$$ \tag{1.5}$$

or

$$\dot{x} = y, \quad \dot{y} = -x + \gamma_1 y + \gamma_2 y^2 + \gamma_3 y^3 + \ldots + \gamma_{2k} y^{2k} + \gamma_{2k+1} y^{2k+1}.$$ \tag{1.6}$$

Therefore, we can conclude that our previous results [9, 10] agree with the conjecture of [18] on the maximum number of limit cycles for the classical Liénard polynomial system (1.6). In [9,10], we have presented a solution of Smale’s thirteenth problem [24] proving that the Liénard system (1.6) with a polynomial of degree $2k + 1$ can have at most k limit cycles. In [4–8,11], we have also presented a solution of Hilbert’s sixteenth problem in the quadratic case of polynomial systems proving that for quadratic systems four is really the maximum number of limit cycles and $(3 : 1)$ is their only possible distribution. We have established some preliminary results on generalizing our ideas and methods to special cubic, quartic and other polynomial dynamical systems as well. In [13], e.g., we have constructed a canonical cubic dynamical system of Kukles type and have carried out the global qualitative analysis of its special case corresponding to a generalized Liénard equation. In particular, it has been shown that the foci of such a Liénard system can be at most of second order and that such system can have at most three limit cycles in the whole phase plane. Moreover, unlike all previous works on the Kukles-type systems, global bifurcations of limit and separatrix cycles using arbitrary
(including as large as possible) field rotation parameters of the canonical system have been studied. As a result, a classification of all possible types of separatrix cycles for the generalized Liénard system has been obtained and all possible distributions of its limit cycles have been found. In [14, 15], we have completed the global qualitative analysis of a planar Liénard-type dynamical system with a piecewise linear function containing an arbitrary number of dropping sections and approximating an arbitrary polynomial function. In [3], we have also completed the global qualitative analysis of a quartic dynamical system which models the dynamics of the populations of predators and their prey in a given ecological system. In [12], we have studied of multiple limit cycle bifurcations in the well-known FitzHugh–Nagumo neuronal model.

We use the obtained results and develop our methods for studying limit cycle bifurcations of polynomial dynamical systems in this paper as well. In Section 2, applying a canonical system with field rotation parameters and using geometric properties of the spirals filling the interior and exterior domains of limit cycles, we solve first the problem on the maximum number of limit cycles surrounding a unique singular point for an arbitrary polynomial system. Then, in Section 3, by means of the same bifurcationally geometric approach, we solve the limit cycle problem for the special Liénard system (1.3) with at most three finite singularities proving that this system can have at most \(k + 1 \) limit cycles in \((k:1)\)-distribution. This is related to the solution of Hilbert’s sixteenth problem on the maximum number and relative position of limit cycles for planar polynomial dynamical systems.

2 Limit Cycles Surrounding a Unique Singular Point

Consider first an arbitrary dynamical system
\[
\begin{align*}
\dot{x} &= P_n(x, y, \mu_1, \ldots, \mu_k), \\
\dot{y} &= Q_n(x, y, \mu_1, \ldots, \mu_k),
\end{align*}
\]
(2.1)
where \(P_n \) and \(Q_n \) are polynomials in the real variables \(x, y \) and not greater than \(n \)-th degree containing \(k \) field rotation parameters, \(\mu_1, \ldots, \mu_k \), and having an anti-saddle (a center or a focus, or a node) at the origin. We prove the following theorem.

Theorem 2.1. The polynomial system (2.1) containing \(k \) field rotation parameters and having a singular point of center type at the origin for the zero values of these parameters can have at most \(k - 1 \) limit cycles surrounding the origin.

Proof. Let all the parameters of (2.1) vanish and suppose that the obtained system
\[
\begin{align*}
\dot{x} &= P_n(x, y, 0, \ldots, 0), \\
\dot{y} &= Q_n(x, y, 0, \ldots, 0)
\end{align*}
\]
(2.2)
has a singular point of center type at the origin.

Input successively the field rotation parameters, \(\mu_1, \ldots, \mu_k \), into this system (see [9, 10]). Suppose, e.g., that \(\mu_1 > 0 \) and that the vector field of the system
\[
\begin{align*}
\dot{x} &= P_n(x, y, \mu_1, 0, \ldots, 0), \\
\dot{y} &= Q_n(x, y, \mu_1, 0, \ldots, 0)
\end{align*}
\]
(2.3)
is rotated counterclockwise turning the origin into a stable focus under increasing the parameter μ_1 [2, 9, 10].

Fix μ_1 and input the parameter μ_2 into (2.3) changing it so that the field of the system

$$\dot{x} = P_n(x, y, \mu_1, \mu_2, 0, \ldots, 0), \quad \dot{y} = Q_n(x, y, \mu_1, \mu_2, 0, \ldots, 0) \quad (2.4)$$

would be rotated in the opposite direction (clockwise). Suppose this occurs for $\mu_2 < 0$. Then, for some value of this parameter, a limit cycle will appear in system (2.4). There are three logical possibilities for such a bifurcation: 1) the limit cycle appears from the focus at the origin; 2) it can also appear from some separatrix cycle surrounding the origin; 3) the limit cycle appears from a so-called “trajectory concentration”. In the last case, the limit cycle is semi-stable and, under further decreasing μ_2, it splits into two limit cycles (stable and unstable) one of which then disappears at (or tends to) the origin and the other disappears on (or tends to) some separatrix cycle surrounding this point. But since the stability character of both a singular point and a separatrix cycle is quite easily controlled [6], this logical possibility can be excluded. Let us choose one of the two other possibilities: e.g., the first one, the so-called Andronov–Hopf bifurcation. Suppose that, for some value of μ_2, the focus at the origin becomes non-rough, changes the character of its stability and generates a stable limit cycle, Γ_1.

Under further decreasing μ_2, three new logical possibilities can arise: 1) the limit cycle Γ_1 disappears on some separatrix cycle surrounding the origin; 2) a separatrix cycle can be formed earlier than Γ_1 disappears on it and then it generates one more (unstable) limit cycle, Γ_2, which joins with Γ_1 forming a semi-stable limit cycle, Γ_{12}; disappearing in a “trajectory concentration” under further decreasing μ_2; 3) in the domain D_1 outside the cycle Γ_1 or in the domain D_2 inside Γ_1, a semi-stable limit cycle appears from a “trajectory concentration” and then splits into two limit cycles (logically, the appearance of such semi-stable limit cycles can be repeated).

Let us consider the third case. It is clear that, under decreasing μ_2, a semi-stable limit cycle cannot appear in the domain D_2, since the focus spirals filling this domain will untwist and the distance between their coils will increase because of the vector field rotation. By contradiction, we can prove that a semi-stable limit cycle cannot appear in the domain D_1.

Suppose it appears in this domain for some values of the parameters $\mu_1^* > 0$ and $\mu_2^* < 0$. Return to system (2.2) and change the inputting order for the field rotation parameters. Input first the parameter $\mu_2 < 0$:

$$\dot{x} = P_n(x, y, \mu_2, 0, \ldots, 0), \quad \dot{y} = Q_n(x, y, \mu_2, 0, \ldots, 0). \quad (2.5)$$

Fix it under $\mu_2 = \mu_2^*$. The vector field of (2.5) is rotated clockwise and the origin turns into an unstable focus. Inputting the parameter $\mu_1 > 0$ into (2.5), we get again system (2.4) the vector field of which is rotated counterclockwise. Under this rotation, a stable limit cycle, Γ_1, will appear from some separatrix cycle. The limit cycle Γ_1 will contract, the outside spirals winding onto this cycle will untwist and the distance between their
coils will increase under increasing \(\mu_1 \) to the value \(\mu_1^* \). It follows that there are no values of \(\mu_2^* < 0 \) and \(\mu_1^* > 0 \) for which a semi-stable limit cycle could appear in the domain \(D_1 \).

The second logical possibility can be excluded by controlling the stability character of the separatrix cycle [6]. Thus, only the first possibility is valid, i.e., system (2.4) has at most one limit cycle.

Let system (2.4) have the unique limit cycle \(\Gamma_1 \). Fix the parameters \(\mu_1 > 0, \mu_2 < 0 \) and input the third parameter, \(\mu_3 > 0 \), into this system supposing that \(\mu_3 \) rotates its vector field counterclockwise:

\[
\dot{x} = P_n(x, y, \mu_1, \mu_2, \mu_3, 0, \ldots, 0), \quad \dot{y} = Q_n(x, y, \mu_1, \mu_2, \mu_3, 0, \ldots, 0). \tag{2.6}
\]

Here we can have two basic possibilities: 1) the limit cycle \(\Gamma_1 \) disappears at the origin; 2) the second (unstable) limit cycle, \(\Gamma_2 \), appears from the origin and, under further increasing the parameter \(\mu_3 \), the cycle \(\Gamma_2 \) joins with \(\Gamma_1 \) forming a semi-stable limit cycle, \(\Gamma_{12} \), which disappears in a “trajectory concentration” surrounding the origin. Besides, we can also suggest that: 3) in the domain \(D_2 \) bounded by the origin and \(\Gamma_1 \), a semi-stable limit cycle, \(\Gamma_{23} \), appears from a “trajectory concentration”, splits into an unstable cycle, \(\Gamma_2 \), and a stable cycle, \(\Gamma_3 \), and then the cycles \(\Gamma_1, \Gamma_2 \) disappear through a semi-stable limit cycle, \(\Gamma_{12} \), and the cycle \(\Gamma_3 \) disappears through an Andronov–Hopf bifurcation; 4) a semi-stable limit cycle, \(\Gamma_{34} \), appears in the domain \(D_2 \) bounded by the cycles \(\Gamma_1, \Gamma_2 \) and, for some set of values of the parameters, \(\mu_1^*, \mu_2^*, \mu_3^* \), system (2.6) has at least four limit cycles.

Let us consider the last, fourth case. It is clear that a semi-stable limit cycle cannot appear either in the domain \(D_1 \) bounded on the inside by the cycle \(\Gamma_1 \) or in the domain \(D_3 \) bounded by the origin and \(\Gamma_2 \) because of the increasing distance between the spiral coils filling these domains under increasing the parameter \(\mu_3 \). To prove the impossibility of the appearance of a semi-stable limit cycle in the domain \(D_2 \), suppose the contrary, i.e., for some set of values of the parameters, \(\mu_1^* > 0, \mu_2^* < 0, \) and \(\mu_3^* > 0 \), such a semi-stable cycle exists. Return to system (2.2) again and input first the parameters \(\mu_3 > 0, \mu_1 > 0 \):

\[
\dot{x} = P_n(x, y, \mu_1, \mu_3, 0, \ldots, 0), \quad \dot{y} = Q_n(x, y, \mu_1, \mu_3, 0, \ldots, 0). \tag{2.7}
\]

Fix these parameters under \(\mu_3 = \mu_3^*, \mu_1 = \mu_1^* \) and input the parameter \(\mu_2 < 0 \) into (2.7) getting again system (2.6). Since, by our assumption, this system has two limit cycles for \(\mu_2 > \mu_2^* \), there exists some value of the parameter, \(\mu_2^{12} (\mu_2^* < \mu_2^{12} < 0) \), for which a semi-stable limit cycle, \(\Gamma_{12} \), appears in system (2.6) and then splits into a stable cycle, \(\Gamma_1 \), and an unstable cycle, \(\Gamma_2 \), under further decreasing \(\mu_2 \). The formed domain \(D_2 \) bounded by the limit cycles \(\Gamma_1, \Gamma_2 \) and filled by the spirals will enlarge, since, by the properties of a field rotation parameter, the interior unstable limit cycle \(\Gamma_2 \) will contract and the exterior stable limit cycle \(\Gamma_1 \) will expand under decreasing \(\mu_2 \). The distance between the spirals of the domain \(D_2 \) will naturally increase, what will prevent the appearance of a semi-stable limit cycle in this domain for \(\mu_2 < \mu_2^{12} \).
Thus, there are no such values of the parameters, $\mu_1^* > 0$, $\mu_2^* < 0$, $\mu_3^* > 0$, for which system (2.6) would have an additional semi-stable limit cycle. Therefore, the fourth case cannot be realized. The third case is considered absolutely similarly. It follows from the first two cases that system (2.6) can have at most two limit cycles.

Suppose that system (2.6) has two limit cycles, Γ_1 and Γ_2, fix the parameters $\mu_1 > 0$, $\mu_2 < 0$, $\mu_3 > 0$ and input the fourth parameter, $\mu_4 < 0$, into this system supposing that μ_4 rotates its vector field clockwise:

$$\dot{x} = P_n(x, y, \mu_1, \ldots, \mu_4, 0, \ldots, 0), \quad \dot{y} = Q_n(x, y, \mu_1, \ldots, \mu_4, 0, \ldots, 0). \tag{2.8}$$

The most interesting logical possibility here is that when the third (stable) limit cycle, Γ_3, appears from the origin and then, under preservation of the cycles Γ_1 and Γ_2, in the domain D_3 bounded on the inside by the cycle Γ_3 and on the outside by the cycle Γ_2, a semi-stable limit cycle, Γ_{45}, appears and then splits into a stable cycle, Γ_4, and an unstable cycle, Γ_5, i.e., when system (2.8) for some set of values of the parameters, $\mu_1^*, \mu_2^*, \mu_3^*, \mu_4^*$, has at least five limit cycles. Logically, such a semi-stable limit cycle could also appear in the domain D_1 bounded on the inside by the cycle Γ_1, since, under decreasing μ_4, the spirals of the trajectories of (2.8) will twist and the distance between their coils will decrease. On the other hand, in the domain D_2 bounded on the inside by the cycle Γ_2 and on the outside by the cycle Γ_1 and also in the domain D_4 bounded by the origin and Γ_3, a semi-stable limit cycle cannot appear, since, under decreasing μ_4, the spirals will untwist and the distance between their coils will increase. To prove the impossibility of the appearance of a semi-stable limit cycle in the domains D_3 and D_1, suppose the contrary, i.e., for some set of values of the parameters, $\mu_1^* > 0$, $\mu_2^* < 0$, $\mu_3^* > 0$, and $\mu_4^* < 0$, such a semi-stable cycle exists.

Return to system (2.2) again, input first the parameters $\mu_4 < 0$, $\mu_2 < 0$ and then the parameter $\mu_1 > 0$:

$$\dot{x} = P_n(x, y, \mu_1, \mu_2, \mu_4, 0, \ldots, 0), \quad \dot{y} = Q_n(x, y, \mu_1, \mu_2, \mu_4, 0, \ldots, 0). \tag{2.9}$$

Fix the parameters μ_4, μ_2 under the values μ_4^*, μ_2^*, respectively. Under increasing μ_1, a separatrix cycle is formed around the origin generating a stable limit cycle, Γ_1. Fix μ_1 under the value μ_1^* and input the parameter $\mu_3 > 0$ into (2.9) getting system (2.8).

Since, by our assumption, system (2.8) has three limit cycles for $\mu_3 < \mu_3^*$, there exists some value of the parameter $\mu_3^{23} (0 < \mu_3^{23} < \mu_3^*)$ for which a semi-stable limit cycle, Γ_{23}, appears in this system and then splits into an unstable cycle, Γ_2, and a stable cycle, Γ_3, under further increasing μ_3. The formed domain D_3 bounded by the limit cycles Γ_2, Γ_3 and also the domain D_1 bounded on the inside by the limit cycle Γ_1 will enlarge and the spirals filling these domains will untwist excluding a possibility of the appearance of a semi-stable limit cycle there.

All other combinations of the parameters $\mu_1, \mu_2, \mu_3, \mu_4$ are considered in a similar way. It follows that system (2.8) has at most three limit cycles. If we continue the procedure of successive inputting the field rotation parameters, $\mu_5, \mu_6, \ldots, \mu_k$, into
system (2.2), it is possible to conclude that system (2.1) can have at most $k - 1$ limit cycles surrounding the origin. The theorem is proved.

3 Limit Cycles of a Special Liénard Polynomial System

By means of the same bifurcationally geometric approach, we will consider now the special Liénard polynomial system (1.3). The study of singular points of system (1.3) will use two index theorems by H. Poincaré, see [2]. The definition of the Poincaré index is the following [2].

Definition 3.1. Let S be a simple closed curve in the phase plane not passing through a singular point of the system

$$
\dot{x} = P(x, y), \quad \dot{y} = Q(x, y),
$$

(3.1)

where $P(x, y)$ and $Q(x, y)$ are continuous functions (for example, polynomials), and M be some point on S. If the point M goes around the curve S in the positive direction (counterclockwise) one time, then the vector coinciding with the direction of a tangent to the trajectory passing through the point M is rotated through the angle $2\pi j$ ($j = 0, \pm 1, \pm 2, \ldots$). The integer j is called the Poincaré index of the closed curve S relative to the vector field of system (3.1) and has the expression

$$
j = \frac{1}{2\pi} \oint_S \frac{P\, dQ - Q\, dP}{P^2 + Q^2}.
$$

(3.2)

According to this definition, the index of a node or a focus, or a center is equal to $+1$ and the index of a saddle is -1. The following Poincaré index theorems are valid [2].

Theorem 3.2. If N, N_f, N_c, and C are respectively the number of nodes, foci, centers, and saddles in a finite part of the phase plane and N' and C' are the number of nodes and saddles at infinity, then it is valid the formula

$$
N + N_f + N_c + N' = C + C' + 1.
$$

(3.3)

Theorem 3.3. If all singular points are simple, then along an isocline without multiple points lying in a Poincaré hemisphere which is obtained by a stereographic projection of the phase plane, the singular points are distributed so that a saddle is followed by a node or a focus, or a center and vice versa. If two points are separated by the equator of the Poincaré sphere, then a saddle will be followed by a saddle again and a node or a focus, or a center will be followed by a node or a focus, or a center.

Consider system (1.3). Its finite singularities are determined by the algebraic system

$$
x(1 + \beta_1 x + \beta_2 x^2) = 0, \quad y = 0.
$$

(3.4)
It always has an anti-saddle at the origin and, in general, can have at most three finite singularities which lie on the x-axis: a saddle and two anti-saddles or two saddles and an anti-saddle, or a saddle-node and an anti-saddle, or a saddle and an anti-saddle, or a unique anti-saddle at the origin. At infinity, system (1.3) has two singular points: a node at the “ends” of the x-axis and a saddle at the “ends” of the y-axis. For studying the infinite singularities, the methods applied in [2] for Rayleigh’s and van der Pol’s equations and also Erugin’s two-isocline method developed in [6] can be used [9, 10].

Following [6], we will study limit cycle bifurcations of (1.3) by means of a canonical system containing field rotation parameters of (1.3) [2, 6].

Theorem 3.4. The special Liénard polynomial system (1.3) with limit cycles can be reduced to the canonical form

\[\dot{x} = y \equiv P(x, y), \]
\[\dot{y} = -x(1 + \beta_1 x \pm x^2) + y(\alpha_0 + x + \alpha_2 x^2 + \ldots + x^{2k-1} + \alpha_{2k} x^{2k}) \equiv Q(x, y), \]

(3.5)

where β_1 is fixed and $\alpha_0, \alpha_2, \ldots, \alpha_{2k}$ are field rotation parameters of (3.5).

Proof. Let all the parameters $\alpha_i, i = 0, 1, \ldots, 2k$, vanish in system (3.5),

\[\dot{x} = y, \quad \dot{y} = -x(1 + \beta_1 x + \beta_2 x^2), \]

(3.6)

and consider the corresponding equation

\[\frac{dy}{dx} = -\frac{x(1 + \beta_1 x + \beta_2 x^2)}{y} \equiv F(x, y). \]

(3.7)

Since $F(x, -y) = -F(x, y)$, the direction field of (3.7) (and the vector field of (3.6) as well) is symmetric with respect to the x-axis. It follows that for arbitrary values of the parameters β_1 and β_2 system (3.6) has centers as anti-saddles and cannot have limit cycles surrounding these points. Therefore, without loss of generality, the even parameter β_2 of system (1.3) can be supposed to be equal, e.g., to ± 1: $\beta_2 = \pm 1$.

Let now all the parameters α_i with even indexes and the odd parameter β_1 vanish in system (3.5),

\[\dot{x} = y, \quad \dot{y} = -x(1 \pm x^2) + y(\alpha_1 x + \alpha_3 x^3 + \ldots + \alpha_{2k-1} x^{2k-1}), \]

(3.8)

and consider the corresponding equation

\[\frac{dy}{dx} = -\frac{x(1 \pm x^2) + y(\alpha_1 x + \alpha_3 x^3 + \ldots + \alpha_{2k-1} x^{2k-1})}{y} \equiv G(x, y). \]

(3.9)

Since $G(-x, y) = -G(x, y)$, the direction field of (3.9) (and the vector field of (3.8) as well) is symmetric with respect to the y-axis. It follows that for arbitrary values of the
Limit Cycle Bifurcations of a Special Liénard Polynomial System

117

parameters $\alpha_1, \alpha_3, \ldots, \alpha_{2k-1}$ system (3.6) has centers as anti-saddles and cannot have limit cycles surrounding these points. Therefore, without loss of generality, all the odd parameters α_i of system (1.3) can be supposed to be equal, e.g., to 1: $\alpha_1 = \alpha_3 = \ldots = \alpha_{2k-1} = 1$.

Inputting the odd parameter β_1 into system (3.8),

$$
\dot{x} = y \equiv R(x, y),
\dot{y} = -x(1 + \beta_1 x \pm x^2) + y(x + x^3 + \ldots + x^{2k-1}) \equiv S(x, y),
$$

and calculating the determinant

$$
\Delta_{\beta_1} = RS'_{\beta_1} - SR'_{\beta_1} = -x^2 y,
$$

we can see that the vector field of (3.10) is rotated symmetrically (in opposite directions) with respect to the x-axis and that the finite singularities (centers and saddles) of (3.10) moving along the x-axis (except the center at the origin) do not change their type or join in saddle-nodes. Therefore, we can fix the odd parameter β_1 in system (3.5), fixing the position of its finite singularities on the x-axis.

To prove that the even parameters $\alpha_0, \alpha_2, \ldots, \alpha_{2k}$ rotate the vector field of (3.5), let us calculate the following determinants:

$$
\Delta_{\alpha_0} = PQ'_{\alpha_0} - QP'_{\alpha_0} = y^2 \geq 0,
\Delta_{\alpha_2} = PQ'_{\alpha_2} - QP'_{\alpha_2} = x^2 y^2 \geq 0,
\ldots
\Delta_{\alpha_{2k}} = PQ'_{\alpha_{2k}} - QP'_{\alpha_{2k}} = x^{2k} y^2 \geq 0.
$$

By definition of a field rotation parameter [2, 6], for increasing each of the parameters $\alpha_0, \alpha_2, \ldots, \alpha_{2k}$, under the fixed others, the vector field of system (3.5) is rotated in the positive direction (counterclockwise) in the whole phase plane; and, conversely, for decreasing each of these parameters, the vector field of (3.5) is rotated in the negative direction (clockwise).

Thus, for studying limit cycle bifurcations of (1.3), it is sufficient to consider the canonical system (3.5) containing only its even parameters $\alpha_0, \alpha_2, \ldots, \alpha_{2k}$ which rotate the vector field of (3.5) under the fixed parameter β_1.

By means of the canonical system (3.5), let us study global limit cycle bifurcations of (1.3) and prove the following theorem.

Theorem 3.5. The special Liénard polynomial system (1.3) can have at most $k + 1$ limit cycles in $(k : 1)$-distribution.
Proof. According to Theorem 3.4, for the study of limit cycle bifurcations of system (1.3), it is sufficient to consider the canonical system (3.5) containing the field rotation parameters \(\alpha_0, \alpha_2, \ldots, \alpha_{2k} \) of (1.3) under the fixed parameter \(\beta_1 \).

Let all these parameters vanish:

\[
\begin{align*}
\dot{x} &= y, \\
\dot{y} &= -x(1 \pm x^2) + y(x + x^3 + \ldots + x^{2k-1}).
\end{align*}
\] (3.11)

Suppose that (3.11) has three finite singularities: a saddle, \(S \), and two anti-saddles, \(O \) at the origin and \(A \) on the \(x \)-axis (all other cases are considered absolutely similarly). System (3.11) is symmetric with respect to the \(y \)-axis and has centers as anti-saddles. Its center domains are bounded by separatrix loops of the saddle \(S \) lying on the \(x \)-axis between \(O \) and \(A \). If to input the parameter \(\beta_1 \) into (3.11), we will get again system (3.10) the vector field of which is rotated symmetrically (in opposite directions) with respect to the \(x \)-axis. The finite singularities \(S, O, \) and \(A \) of (3.10) do not change their type and the center domains of \(O \) and \(A \) will be bounded by separatrix loops of the saddle \(S \) of (3.10) [2, 6].

Let us input successively the field rotation parameters \(\alpha_0, \alpha_2, \ldots, \alpha_{2k} \) into system (3.10) beginning with the parameters at the highest degrees of \(x \) and alternating with their signs (see [9, 10]). So, begin with the parameter \(\alpha_{2k} \) and let, for definiteness, \(\alpha_{2k} > 0 \):

\[
\begin{align*}
\dot{x} &= y, \\
\dot{y} &= -x(1 + \beta_1 x \pm x^2) \\
&\quad + y(x + x^3 + \ldots + x^{2k-1} + \alpha_{2k} x^{2k}).
\end{align*}
\] (3.12)

In this case, the vector field of (3.12) is rotated in the positive direction (counterclockwise) turning the center \(O \) at the origin into a nonrough (weak) unstable focus. The other center \(A \) becomes a rough unstable focus [2, 6].

Fix \(\alpha_{2k} \) and input the parameter \(\alpha_{2k-2} < 0 \) into (3.12):

\[
\begin{align*}
\dot{x} &= y, \\
\dot{y} &= -x(1 + \beta_1 x \pm x^2) \\
&\quad + y(x + x^3 + \ldots + \alpha_{2k-2} x^{2k-2} + x^{2k-1} + \alpha_{2k} x^{2k}).
\end{align*}
\] (3.13)

Then the vector field of (3.13) is rotated in the opposite direction (clockwise) and the focus \(O \) immediately changes the character of its stability (since its degree of nonroughness decreases and the sign of the field rotation parameter at the lower degree of \(x \) changes) generating a stable limit cycle. The focus \(A \) will also generate a stable limit cycle for some value of \(\alpha_{2k-2} \) after changing the character of its stability. Under further decreasing \(\alpha_{2k-2} \), both limit cycles will expand disappearing on separatrix loops of (3.13) [2, 6].

Denote the limit cycle surrounding the origin by \(\Gamma_1 \), the domain outside the cycle by \(D_1 \), the domain inside the cycle by \(D_2 \) and consider logical possibilities of the appearance of other (semi-stable) limit cycles from a “trajectory concentration” surrounding
this singular point. It is clear that, under decreasing the parameter α_{2k-2}, a semi-stable limit cycle cannot appear in the domain D_2, since the focus spirals filling this domain will untwist and the distance between their coils will increase because of the vector field rotation [9, 10].

By contradiction, we can also prove that a semi-stable limit cycle cannot appear in the domain D_1. Suppose it appears in this domain for some values of the parameters $\alpha_{2k}^* > 0$ and $\alpha_{2k-2}^* < 0$. Return to system (3.10) and change the inputting order for the field rotation parameters. Input first the parameter $\alpha_{2k-2} < 0$:

$$\begin{align*}
\dot{x} &= y, \\
\dot{y} &= -x(1 + \beta_1 x \pm x^2) \\
&\quad + y(x + x^3 + \ldots + \alpha_{2k-2} a^{2k-2} + x^{2k-1}).
\end{align*}$$

(3.14)

Fix it under $\alpha_{2k-2} = \alpha_{2k-2}^*$. The vector field of (3.14) is rotated clockwise and the origin turns into a nonrough stable focus. Inputting the parameter $\alpha_{2k} > 0$ into (3.14), we get again system (3.13) the vector field of which is rotated counterclockwise. Under this rotation, a stable limit cycle Γ_1 will appear from a separatrix loop for some value of α_{2k}. This cycle will contract, the outside spirals winding onto the cycle will untwist and the distance between their coils will increase under increasing α_{2k} to the value α_{2k}^*. It follows that there are no values of $\alpha_{2k-2} < 0$ and $\alpha_{2k} > 0$ for which a semi-stable limit cycle could appear in the domain D_1.

This contradiction proves the uniqueness of a limit cycle surrounding the origin O in system (3.13) for any values of the parameters α_{2k-2} and α_{2k} of different signs. Obviously, if these parameters have the same sign, system (3.13) has no limit cycles surrounding the origin at all. On the same reason, this system cannot have more than one limit cycle surrounding the other its singular point A.

Let system (3.13) have the unique limit cycle Γ_1 surrounding the origin O and a unique limit cycle surrounding A. Fix the parameters $\alpha_{2k} > 0$, $\alpha_{2k-2} < 0$ and input the third parameter, $\alpha_{2k-4} > 0$, into this system:

$$\begin{align*}
\dot{x} &= y, \\
\dot{y} &= -x(1 + \beta_1 x \pm x^2) + y(x + x^3 + \ldots \\
&\quad + \alpha_{2k-4} a^{2k-4} + \alpha_{2k-2} a^{2k-2} + x^{2k-1} + \alpha_{2k} a^{2k}).
\end{align*}$$

(3.15)

The vector field of (3.15) is rotated counterclockwise, the focus at the origin O changes the character of its stability and the second (unstable) limit cycle, Γ_2, immediately appears from this point. The limit cycle surrounding A can only disappear in this point (because of its roughness) under increasing the parameter α_{2k-4}. Under further increasing α_{2k-4}, the limit cycle Γ_2 will join with Γ_1 forming a semi-stable limit cycle, Γ_{12}, which will disappear in a “trajectory concentration” surrounding the origin. Can another semi-stable limit cycle appear around the origin in addition to Γ_{12}? It is clear that such a limit cycle cannot appear either in the domain D_1 bounded on the inside by the cycle Γ_1
or in the domain D_1 bounded by the origin and Γ_2 because of the increasing distance between the spiral coils filling these domains under increasing the parameter α_{2k-4} \cite{9,10}.

To prove the impossibility of the appearance of a semi-stable limit cycle in the domain D_2 bounded by the cycles Γ_1 and Γ_2 (before their joining), suppose the contrary, i.e., that for some set of values of the parameters, $\alpha_{2k}^* > 0$, $\alpha_{2k-2}^* < 0$, and $\alpha_{2k-4}^* > 0$, such a semi-stable cycle exists. Return to system (3.10) again and input first the parameters $\alpha_{2k-4} > 0$ and $\alpha_{2k} > 0$:

$$\begin{align*}
\dot{x} &= y, \\
\dot{y} &= -x(1 + \beta_1 x \pm x^2) + y(x + x^3 + \ldots + \alpha_{2k-4} x^{2k-4} + x^{2k-3} + \alpha_{2k} x^{2k}).
\end{align*}$$

Both parameters act in a similar way: they rotate the vector field of (3.16) counterclockwise turning the origin into a nonrough unstable focus.

Fix these parameters under $\alpha_{2k-4} = \alpha_{2k-4}^*$, $\alpha_{2k} = \alpha_{2k}^*$ and input the parameter $\alpha_{2k-2} < 0$ into (3.16) getting again system (3.15). Since, by our assumption, this system has two limit cycles surrounding the origin for $\alpha_{2k-2} > \alpha_{2k-2}^*$, there exists some value of the parameter, $\alpha_{2k-2}^{12} \ (\alpha_{2k-2}^* < \alpha_{2k-2}^{12} < 0)$, for which a semi-stable limit cycle, Γ_1, appears in system (3.15) and then splits into a stable cycle, Γ_1, and an unstable cycle, Γ_2, under further decreasing α_{2k-2}. The formed domain D_2 bounded by the limit cycles Γ_1, Γ_2 and filled by the spirals will enlarge since, on the properties of a field rotation parameter, the interior unstable limit cycle Γ_2 will contract and the exterior stable limit cycle Γ_1 will expand under decreasing α_{2k-2}. The distance between the spirals of the domain D_2 will naturally increase, which will prevent the appearance of a semi-stable limit cycle in this domain for $\alpha_{2k-2} < \alpha_{2k-2}^{12}$ \cite{9,10}.

Thus, there are no such values of the parameters, $\alpha_{2k}^* > 0$, $\alpha_{2k-2}^* < 0$, $\alpha_{2k-4}^* > 0$, for which system (3.15) would have an additional semi-stable limit cycle surrounding the origin O. Obviously, there are no other values of the parameters α_{2k}, α_{2k-2}, and α_{2k-4} for which system (3.15) would have more than two limit cycles surrounding this singular point. On the same reason, additional semi-stable limit cycles cannot appear around the other singular point A of (3.15). Therefore, three in $(2 : 1)$-distribution is the maximum number of limit cycles in system (3.15).

Suppose that system (3.15) has two limit cycles, Γ_1 and Γ_2, surrounding the origin O and a unique limit cycle surrounding A (this is always possible if $\alpha_{2k} \gg -\alpha_{2k-2} \gg \alpha_{2k-4} > 0$). Fix the parameters α_{2k}, α_{2k-2}, α_{2k-4} and consider a more general system inputting the fourth parameter, $\alpha_{2k-6} < 0$, into (3.15):

$$\begin{align*}
\dot{x} &= y, \\
\dot{y} &= -x(1 + \beta_1 x \pm x^2) + y(x + x^3 + \ldots + \alpha_{2k-6} x^{2k-6} + x^{2k-5} + \ldots + \alpha_{2k} x^{2k}).
\end{align*}$$

For decreasing α_{2k-6}, the vector field of (3.17) will be rotated clockwise and the focus at the origin will immediately change the character of its stability generating a third
(stable) limit cycle, Γ_3. With further decreasing α_{2k-6}, Γ_3 will join with Γ_2 forming a semi-stable limit cycle, Γ_{23}, which will disappear in a “trajectory concentration” surrounding the origin; the cycle Γ_1 will expand disappearing on a separatrix loop of (3.17).

Let system (3.17) have three limit cycles surrounding the origin O: Γ_1, Γ_2, Γ_3. Could an additional semi-stable limit cycle appear with decreasing α_{2k-6} after splitting of which system (3.17) would have five limit cycles around the origin? It is clear that such a limit cycle cannot appear either in the domain D_2 bounded by the cycles Γ_1 and Γ_2 or in the domain D_4 bounded by the origin and Γ_3 because of the increasing distance between the spiral coils filling these domains after decreasing α_{2k-6}. Consider two other domains: D_1 bounded on the inside by the cycle Γ_1 and D_3 bounded by the cycles Γ_2 and Γ_3. As before, we will prove the impossibility of the appearance of a semi-stable limit cycle in these domains by contradiction.

Suppose that for some set of values of the parameters $\alpha_{2k} > 0, \alpha_{2k-2} < 0, \alpha_{2k-4} > 0$, and $\alpha_{2k-6} < 0$ such a semi-stable cycle exists. Return to system (3.10) again, input first the parameters $\alpha_{2k-6} < 0, \alpha_{2k-2} < 0$ and then the parameter $\alpha_{2k} > 0$:

$$\begin{aligned}
\dot{x} &= y, \\
\dot{y} &= -x(1 + \beta_1 x \pm x^2) + y(x + x^3 + \ldots + \alpha_{2k-6} x^{2k-6} + \ldots + \alpha_{2k-2} x^{2k-2} + x^{2k-3} + \alpha_{2k} x^{2k}).
\end{aligned}$$

(3.18)

Fix the parameters $\alpha_{2k-6}, \alpha_{2k-2}$ under the values $\alpha_{2k-6}^*, \alpha_{2k-2}^*$, respectively. With increasing α_{2k}, a separatrix loop formed around the origin will generate a stable limit cycle, Γ_1. Fix α_{2k} under the value α_{2k}^* and input the parameter $\alpha_{2k-4} > 0$ into (3.18) getting system (3.17).

Since, by our assumption, (3.17) has three limit cycles for $\alpha_{2k-4} < \alpha_{2k-4}^*$, there exists some value of the parameter $\alpha_{2k-4}^{21} (0 < \alpha_{2k-4}^{21} < \alpha_{2k-4}^*)$ for which a semi-stable limit cycle, Γ_{23}, appears in this system and then splits into an unstable cycle, Γ_2, and a stable cycle, Γ_3, with further increasing α_{2k-4}. The formed domain D_3 bounded by the limit cycles Γ_2, Γ_3 and also the domain D_1 bounded on the inside by the limit cycle Γ_1 will enlarge and the spirals filling these domains will untwist excluding a possibility of the appearance of a semi-stable limit cycle there [9, 10].

All other combinations of the parameters $\alpha_{2k}, \alpha_{2k-2}, \alpha_{2k-4},$ and α_{2k-6} are considered in a similar way. It follows that system (3.17) can have at most four limit cycles in $(3 : 1)$-distribution.

If we continue the procedure of successive inputting the even parameters, $\alpha_{2k}, \ldots, \alpha_2, \alpha_0$, into system (3.10), it is possible first to obtain k limit cycles surrounding the origin ($\alpha_{2k} \gg \alpha_{2k-2} \gg \alpha_{2k-4} \gg -\alpha_{2k-6} \gg \alpha_{2k-8} \gg \ldots$) and then to conclude that the canonical system (3.5) (i.e., the special Liénard polynomial system (1.3) as well) can have at most $k + 1$ limit cycles in $(k : 1)$-distribution. The theorem is proved. \(\square\)
Acknowledgements

This work was supported by the DAAD, MPG (Germany), IHÉS (France), and NWO (Netherlands).

References

[22] G. S. Rychkov, The maximal number of limit cycles of the system \(\dot{y} = -x, \)
\(\dot{x} = y - \sum_{i=0}^{2} a_i x^{2i+1} \) is equal to two, *Differ. Equ.* 11 (1975), 301–302.
