Phys. 321 - E\&M - Test 3 - Dec. 3, 1999

1. (25 pts) A monochromatic electromagnetic wave traveling in the z-direction is incident on a thick slab of conducting material. The (time averaged) energy density in the conductor is given by:

$$
\langle U\rangle=\frac{k^{2}}{2 \mu \omega^{2}} E_{0}^{2} e^{-2 \kappa z}
$$

a) Determine the total energy per unit area delivered to the slab.

Hint: assume the slab has a cross sectional area A and it is infinitely thick in order to be able to integrate from $z=0$ to $z=\infty$.
b) What fraction of the total energy delivered to the slab is deposited within the skin depth?
2. (25 pts) A particle of charge q moves in a circle of radius R at constant angular velocity ω. Assume that the circle lies in the $x y$ plane, centered at the origin, and at time $t=0$ the charge is at $(R, 0)$, on the positive x axis. Find the Liénard-Wiechert scalar and vector potentials for points on the z axis.
3. (25 pts) An insulating circular ring (radius R) lies in the $x y$ plane, centered at the origin. It carries a linear charge density $\lambda=\lambda_{0} \cos \varphi$, where λ_{0} is constant and φ is the usual azimuthal angle. The ring is now set spinning at constant angular velocity ω about the z axis.
a) Determine the initial dipole moment of the ring and write down the dipole moment as a function of time.
b) Determine the power radiated by the spinning ring.
4. (25 pts) A positron of charge q and mass m is accelerated from rest through a distance D in a uniform electric field E. What fraction of the energy gained is lost by radiation?
$\left(\mathrm{q}=1.6 \times 10^{-19} \mathrm{C}, m=9.1 \times 10^{-31} \mathrm{~kg}\right)$
$E=3 \times 10^{6} \mathrm{~V} / \mathrm{m}$ and $D=1 \mathrm{~m}$.
5. (10 pts) Bonus Problem: The dipole radiation power distribution is given by:

$$
\frac{d\langle P\rangle}{d \Omega}=\left(\frac{\mu_{0} p_{0}^{2} \omega^{4}}{32 \pi^{2} c}\right) \sin ^{2} \theta
$$

Use this to explain
a) the blueness of the sky, and
b) the redness of the sunset.

