1. (25 pts) Suppose $V=0$ and $\vec{A}=A_{0} \sin (k y-\omega t) \hat{z}$, where A_{0}, ω, and k are constants.
a) Find \vec{E} and \vec{B}.
b) Use the Maxwell equation for the Curl of \vec{B} to determine the relation between ω and k.
2. (25 pts) A particle of charge q moves in a circle of radius R at constant angular velocity ω. Assume that the circle lies in the $x y$ plane, centered at the origin, and at time $t=0$ the charge is at $(R, 0)$, on the positive x axis. Find the Liénard-Wiechert scalar and vector potentials for points on the z axis.

Recall: $\quad V(\vec{r}, t)=k_{e} \frac{q c}{c-\vec{\imath} \bullet \vec{v})} \quad$ and $\quad \vec{A}(\vec{r}, t)=\frac{\vec{v}}{c^{2}} V(\vec{r}, t)$
3. (25 pts) Determine an expression for the radiation resistance of an oscillating electric dipole. This is the resistance that would give the same average power loss - to heat - as the oscillating dipole in fact puts out in the form of radiation. Give your answer in terms of d / λ, where d is the distance between the plus and minus charges of the dipole and λ is the wavelength of the radiation.
4. (25 pts) An insulating circular ring (radius R) lies in the $x y$ plane, centered at the origin. It carries a linear charge density $\lambda=\lambda_{0} \cos \varphi$, where λ_{0} is constant and φ is the usual azimuthal angle. The ring is now set spinning at constant angular velocity ω about the z axis.
a) Determine the initial dipole moment of the ring and write down the dipole moment as a function of time.
b) Determine the power radiated by the spinning ring.
(10 pts) Bonus part of the problem:
c) As the ring radiates it will lose energy and therefore will spin slower and slower. The kinetic energy of the ring as a function of ω is given by $\frac{1}{2} I \omega^{2}$, where I is the moment of inertia of the ring. Determine an expression for the angular velocity as a function of time; that is, $\omega(t)$ if at time $t=0$, it is spinning with an angular velocity ω_{0}.

Larmor formula: $\quad P=\frac{\mu_{0}(\ddot{p})^{2}}{6 \pi c}$

