1. Consider a parallel plate capacitor constructed of circular plates of radius a and separated by a distance $w \ll a$. Thin wires connect to the centers of the plates. Assume the current I in the wires is constant. Also assume the surface charge density on the plates is uniform, at any given time, and is zero at $t=0$.
a) Find the electric field between the plates, as a function of s and t.
b) Find the displacement current between the plates, as a function of s and t.
c) Find the magnetic field between the plates, as a function of s and t.
2. A long coaxial cable carries current I (the current flows down the surface of the inner cylinder, radius a, and back along the outer cylinder, radius b). The two cylindrical conductors are held at a potential difference V. The electric and magnetic fields due to the two cylindrical conductors are given by:

$$
\vec{E}=\frac{V}{\ln \left(\frac{b}{a}\right)} \frac{\hat{s}}{s} \quad \vec{B}=\frac{\mu_{0} I}{2 \pi s} \hat{\phi} \quad a \leq s \leq b ; \quad \vec{E}=\vec{B}=0 \quad s<a ; \quad s>b
$$

a) Determine the inductance per unit length, \mathfrak{L}, by finding the magnetic energy stored in a section of length ℓ.
b) Calculate the power (energy per unit time) transported down the coaxial cable.
3. Write down the (real) electric and magnetic fields for a monochromatic plane wave of amplitude E_{0}, frequency ω, and phase angle zero that is traveling in the direction from the origin to the point $(1,2,2)$, with polarization parallel to the $x y$ plane.
4. Consider a long solenoid of radius R of n turns per unit length, carrying a current I. The magnetic field due to the solenoid is given by

$$
\vec{B}=\mu_{0} n I \hat{z} \quad(s<R) \quad \text { and } \quad \vec{B}=0 \quad(s>R) .
$$

a) Determine the 3×3 matrix that represents the stress tensor in the region inside the solenoid.
b) Determine the force per unit length on the "right half" of the inside of the solenoid; that is, the region from $\phi=0$ to $\phi=\pi$.

$$
\text { Recall: } \begin{aligned}
T_{i j} & =\varepsilon_{0}\left(E_{i} E_{j}-\frac{1}{2} \delta_{i j} E^{2}\right)+\frac{1}{\mu_{0}}\left(B_{i} B_{j}-\frac{1}{2} \delta_{i j} B^{2}\right) \\
\vec{F} & =\oint_{S} \vec{T} \cdot d \vec{a}-\varepsilon_{0} \mu_{0} \frac{d}{d t} \int_{V} \vec{S} d \tau
\end{aligned}
$$

