1. (20 pts) Two magnetic dipoles, $\vec{m}_{1}$ and $\vec{m}_{2}$, are oriented as shown. The angle between their directions is $45^{\circ}$ and they are a distance $r$ apart.
a) Calculate the torque on $\vec{m}_{2}$ due to $\vec{m}_{1}$.
b) Calculate the force on $\vec{m}_{2}$ due to $\vec{m}_{1}$.

Recall: $\quad \vec{B}=\frac{\mu_{0}}{4 \pi r^{3}}[3(\vec{m} \cdot \hat{r}) \hat{r}-\vec{m}]$

2. (20 pts) Find the self-inductance per unit length of a long solenoid, of length $\ell$ and radius $R$, carrying $n$ turns per unit length.
3. (20 pts) A square loop of wire of side $a$ lies a distance $a$ from a long straight wire, which carries a current $I$.
a) Find the magnetic flux through the loop.
b) If the current in the wire varies as $I(t)=I_{0} e^{-\alpha t}$, where $I_{0}$ and $\alpha$ are constants, determine the emf induced in the loop.

3. (20 pts) Consider charging up an inductor $L$, by connecting it and a resistor $R$ to a battery of fixed voltage $V_{0}$ at time $t=0$. The current is described by $I(t)=I_{0}\left(1-e^{-t / \tau}\right)$
a) Determine expressions for $I_{0}$ and $\tau$.

Let $L=0.2 \mathrm{H}, R=40 \Omega$, and $V_{0}=20$ volts.
b) Evaluate $I_{0}$ and $\tau$.
c) After a long time what is the power dissipated
 in the resistor as heat?
d) What is the final energy stored in the inductor?

Recall: $\int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}}$
5. (20 pts) An "infinitely" long hollow cylinder, inner radius $a$ and outer radius $b$, carries a "frozen-in" magnetization

$$
\vec{M}=M_{0} \frac{a^{2}}{s^{2}} \hat{\phi} \quad a \leq s \leq b
$$

where $M_{0}$ is a constant, $s$ is the distance from the center of the cylinder, and $\hat{\phi}$ is the usual azimuthal unit vector.
a) Determine all the bound currents.
b) Use the bound currents to determine the magnetic field in all three regions:

$$
s<a ; \quad a<s<b ; \quad s>b
$$

