1.(25 pts) Consider a wire of radius $a$ and length $L$ carrying a uniform current $I$. There is a potential difference $V$ between the ends of the wire.
a) Find the electric and magnetic fields on the surface of the wire.
b) Find the Poynting vector $\vec{S}$ at the surface of the wire and calculate the energy flow (power) into the wire.
2.(25 pts) Write down the (real) electric and magnetic fields for a monochromatic plane wave of amplitude $E_{0}$, frequency $\omega$, and phase angle zero that is traveling in the direction from the origin to the point $(1,-2,2)$, with polarization parallel to the $y z$ plane.
3.(25 pts) Consider a monochromatic plane wave traveling in the $z$ direction and linearly polarized in the $x$ direction.
a) Determine the $3 \times 3$ matrix that represents the Maxwell stress tensor for this plane wave.
b) If the beam has a cross sectional area $A$ and it is absorbed by the wall, determine the timeaveraged force exerted on the wall.
Recall: $T_{i j}=\varepsilon_{0}\left(E_{i} E_{j}-\frac{1}{2} \delta_{i j} E^{2}\right)+\frac{1}{\mu_{0}}\left(B_{i} B_{j}-\frac{1}{2} \delta_{i j} B^{2}\right)$

$$
\vec{F}=\oint_{S} \vec{T} \cdot d \vec{a}-\varepsilon_{0} \mu_{0} \frac{d}{d t} \int_{V} \vec{S} d \tau
$$

4. ( 25 pts ) Consider an electromagnetic wave at normal incidence on the interface between two non-magnetic media. The wave is traveling in medium \#1 ( $n_{1}=1.5$ ) in the $z$-direction and polarized in the $x$-direction. Medium \#2 has $n_{2}=3.5$.
a) Write down the expressions for the complex electric and magnetic fields for the reflected wave.
b) Determine the reflection coefficient, $R$.
b) Is the reflected wave in-phase or out-of-phase with the incident wave?

Recall: $\quad \tilde{E}_{0 R}=\frac{(1-\beta)}{(1+\beta)} \tilde{E}_{0 I}$, where $\beta=\frac{\mu_{1} v_{1}}{\mu_{2} v_{2}}$.

