1. (25 pts) A square loop of wire (side a) lies on a table, a distance s from a very long straight wire, which carries a current I.
a) Find the magnetic flux through the loop.
b) If someone now pulls the loop directly away from the wire, at speed v, what emf is generated in the loop?

c) In what direction (clockwise or counterclockwise) does the current in the loop flow?
2. (25 pts) Consider a long solenoid of radius R of n turns per unit length, carrying a current I. The magnetic field due to the solenoid is given by

$$
\vec{B}=\mu_{0} n I \hat{z} \quad(s<R) \quad \text { and } \quad \vec{B}=0 \quad(s>R) .
$$

a) Determine the 3×3 matrix that represents the stress tensor in the region inside the solenoid.
b) Determine the force per unit length on the "right half" of the inside of the solenoid; that is, the region from $\phi=0$ to $\phi=\pi$.

Recall: $T_{i j}=\varepsilon_{0}\left(E_{i} E_{j}-\frac{1}{2} \delta_{i j} E^{2}\right)+\frac{1}{\mu_{0}}\left(B_{i} B_{j}-\frac{1}{2} \delta_{i j} B^{2}\right)$

$$
\vec{F}=\oint_{S} \vec{T} \cdot d \vec{a}-\varepsilon_{0} \mu_{0} \frac{d}{d t} \int_{V} \vec{S} d \tau
$$

3. (25 pts) An insulating circular ring (radius R) lies in the $x y$ plane, centered at the origin. It carries a linear charge density $\lambda=\lambda_{0}(1+\sin \phi)$, where λ_{0} is constant and ϕ is the usual azimuthal angle. The ring is now set spinning at constant angular velocity ω about the z axis. Calculate the power radiated.
4. (25 pts) A rocket ship leaves earth at a speed of $(4 / 5) c$. When a clock on the rocket says one hour has elapsed, the rocket sends a light signal back to earth.
a) According to earth clocks, when was the signal sent?
b) According to earth clocks, how long after the rocket left did the signal arrive back on earth?
c) According to the rocket observer, how long after the rocket left did the signal arrive back on earth?
5. (25 pts) Event A happens at the point $(x=6, y=2, z=1)$ and at a time t given by $c t=7$; event B occurs at $(3,2,1)$ and $c t=5$, both in system S.
a) Find the invariant interval between A and B.
b) Is the invariant interval timelike, spacelike, or lightlike?
c) Find the velocity of an inertial system relative to S so that the events occur simultaneously or the events are at the same spatial point.
d) Determine the coordinates of event A in the new inertial system, that is, $(\bar{x}, \bar{y}, \bar{z})$ and $c \bar{t}$.
6. (25 pts) If a particle's kinetic energy is twice its rest energy, what is its speed?

$$
\begin{aligned}
& \quad \bar{x}=\gamma(x-v t) \quad \bar{y}=y \quad \bar{z}=z \\
& \text { RECALL: } \quad \text { Lorentz transformation: } \quad \bar{t}=\gamma\left(t-\frac{v}{c^{2}} x\right) \quad \gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}} \\
& \vec{p}=\gamma_{u} m \vec{u} \quad E=\gamma_{u} m c^{2} \quad E^{2}=p^{2} c^{2}+m^{2} c^{4} \quad \frac{u}{c}=\frac{p c}{E}
\end{aligned}
$$

