Problem 7.20 Reif

(a) To compute this average, use the 3-d Maxwellian speed probability density, \(R(v) \),

\[
R(v) = 4\pi \left(\frac{m}{2\pi kT} \right)^{3/2} v^2 \exp\left[-\frac{mv^2}{2kT} \right].
\]

(1)

Recall that \(R(v)dv \) is the probability of finding a molecule with a speed in the range \(v \) to \(v + dv \). The mean value of \(\frac{1}{v} \) is defined as

\[
\langle \frac{1}{v} \rangle = \int_0^\infty \frac{1}{v} R(v)dv = 4\pi \left(\frac{m}{2\pi kT} \right)^{3/2} \int_0^\infty v \exp\left[-\frac{mv^2}{2kT} \right] dv.
\]

(2)

To do the integral, make a simple variable substitution, \(u^2 = \frac{mv^2}{2kT} \), and also note \(udu = \frac{mvdv}{2kT} \). Equation (2) then transforms into

\[
\langle \frac{1}{v} \rangle = 4\pi \left(\frac{m}{2\pi kT} \right)^{3/2} \frac{kT}{m} \int_0^\infty 2u \exp\left[-u^2 \right] du = \left(\frac{2m}{\pi kT} \right)^{1/2} \int_{u=0}^{u=\infty} d \exp\left[-u^2 \right],
\]

(3)

which finally yields

\[
\langle \frac{1}{v} \rangle = \left(\frac{2m}{\pi kT} \right)^{1/2}.
\]

(4)

If we compare this result with \(\frac{1}{\bar{v}} \), where the mean speed is \(\bar{v} = (8kT/\pi m)^{1/2} \), we see that

\[
\langle \frac{1}{v} \rangle = \frac{4}{\pi} \frac{1}{\bar{v}}.
\]

(5)

There is about a 27% difference between the two quantities.

(b) The translational kinetic energy \(\epsilon \) is uniquely determined by the molecular speed \(v \), \(\epsilon = \frac{mv^2}{2} \). Thus the fraction of molecules with speed in the range \(v \) to \(v + dv \) must be the same as the fraction with energy in the range \(\epsilon \) to \(\epsilon + d\epsilon \). Let’s call this fraction \(\psi(\epsilon)d\epsilon \), and we thus have

\[
\psi(\epsilon)d\epsilon = R(v)dv,
\]

(6)

where \(R(v) \) is the 3-d Maxwellian speed probability density defined above. Now we simply convert the right side of Eq.(6) into energy terms by substituting

\[
v^2 = 2\epsilon/m,
\]

(7)

and

\[
dv = (2m\epsilon)^{-1/2}d\epsilon,
\]

(8)

to obtain

\[
\psi(\epsilon)d\epsilon = 4\pi \left(\frac{m}{2\pi kT} \right)^{3/2} \frac{2\epsilon}{m} \exp\left[-\frac{\epsilon}{kT} \right] \frac{d\epsilon}{\sqrt{2m\epsilon}},
\]

(9)

which simplifies to

\[
\psi(\epsilon)d\epsilon = 2\pi \left(\frac{1}{\pi kT} \right)^{3/2} \sqrt{\epsilon} \exp\left[-\frac{\epsilon}{kT} \right] d\epsilon.
\]

(10)