A square wire loop 3 m on a side lies at right angles to a uniform magnetic field of 8 T that completely fills the loop. A 6 V bulb is in series with the loop. The magnetic field is decreased steadily to zero over a time interval Δt.

1. What is the initial value of the flux?
2. Is the flux increasing or decreasing?
3. Will the current go clockwise or counterclockwise?
4. How long must Δt be if the light is to shine at full brightness during this time?

1. \[
\phi_B = NBA \cos \theta
\]
\[
= (1)(8)(3^2) \cos 0^\circ
\]
\[
= 72 \text{ Tm}^2 = 72 \text{ wb}
\]

2. B decreases, ϕ_B decreases

3. decrease thumb parallel to original

\Rightarrow clockwise

4. \[
Emf = -\frac{d\phi_B}{dt}
\]
\[
= -A \frac{dB}{dt} = -(3^2) \frac{B_f - B_i}{\Delta t} = -9 \frac{(0-8)}{\Delta t}
\]
\[
\Delta t = 1.25
\]