In the circuit shown below:

a. What is the equivalent resistance for the 3 resistors (4 points)?

b. How much current is coming out of the battery (3 points)?

c. How much current is passing through the 3 Ω resistor (3 points)?

\[\begin{array}{c}
\text{9 V} \\
\text{1Ω} \\
\text{6Ω} \\
\text{3Ω}
\end{array} \]

\(a) \quad 3+6 \text{ in parallel} \)

\[\frac{1}{R_p} = \frac{1}{3} + \frac{1}{6} \]

\[R_p = 2 \Omega \]

1 Ω in series with 2 Ω \(\Rightarrow \) \(R_{\text{equiv}} = 3 \Omega \)

\(b) \quad \frac{I}{3 \Omega} \)

\[V = IR \]

\[q = I(2) \]

\[I = 3 \text{ amp} \]

\(c) \quad V_{\text{drop}} \text{ for } 2 \Omega \)

\[V = IR = (3)(2) = 6 \text{ Volts} \]

For 3 Ω:

\[I = \frac{V}{R} = \frac{6}{3} = 2 \text{ A} \]