Exam Total

Printed Name: \qquad
Recitation: \qquad

1. A positive point charge q_{0} is held fixed at $(0, a)$. A positive charge Q is uniformly fixed along a line segment from the origin to $(L, 0)$.
a. Determine $\vec{E}_{q_{0}}$, the electric field at P located at (L, a), due to the point charge q_{0}.

(15) b. Set up an integral to determine \vec{E}_{Q}, the electric field at P, due to the line of charge Q. [Only set up the integral. Do not evaluate the integral.]

$$
\vec{E}_{Q}=\int_{0}^{L} \frac{k\left(\frac{Q}{L}\right) d x}{\left[(L-x)^{2}+a^{2}\right]^{3 / 2}}[(L-x) \hat{\imath}+a \hat{\jmath}]
$$

$\vec{r}=(L-x) \hat{\imath}+a \hat{\jmath}$
$d Q=\lambda d x=\left(\frac{Q}{L}\right) d x$
$r=\sqrt{(L-x)^{2}+a^{2}}$
$\hat{r}=\frac{L-x}{\sqrt{(L-x)^{2}+a^{2}}} \hat{\imath}+\frac{a}{\sqrt{(L-x)^{2}+a^{2}}} \hat{\jmath}$
2. A positive charge q_{1} and mass m_{1} has potential energy U_{1} when located at $P_{1} . q_{1}$ is released at P_{1}.
(10) Determine v_{f}, the final speed of q_{1}.

$$
v_{f}=\sqrt{\frac{2 U_{1}}{m}}
$$

$U_{1}+K_{1}=U_{f}+K_{f}$
$U_{1}=\frac{1}{2} m v_{f}^{2}$
3. Consider a circuit consisting of a resistor $R=1 \mathrm{k} \Omega$ and a capacitor $C=1 \mu \mathrm{~F}$.
(5) a. Calculate the time constant.

$$
\tau=R C=\left(1 \times 10^{3} \Omega\right)\left(1 \times 10^{-6} \mathrm{~F}\right)
$$

$$
\tau=1 \mathrm{~ms}
$$

(10) b. The initial charge stored in the capacitor is Q_{0}, and the capacitor started discharging at $t=0$. Write the time when the stored charge is one-half Qo.
$\frac{1}{2} Q_{0}=Q_{0} e^{-t / \tau}$
$t=(1 \mathrm{~ms}) \ln (2)$
$\ln \left(\frac{1}{2}\right)=-\frac{t}{1 \mathrm{~ms}}$
(15) c. Determine the electric current through the resistor in $t=1 \mathrm{~ms}$ when the initial voltage across the capacitor is 1 kV .

$$
I=\frac{V}{R}=\frac{Q}{R C}=\frac{Q_{0}}{R C} e^{-1 \mathrm{~ms} / \tau}=\frac{V_{0}}{R e}=\frac{1 \times 10^{3} \mathrm{~V}}{\left(1 \times 10^{3} \Omega\right) \mathrm{e}}
$$

$$
I=\frac{1 \mathrm{~A}}{e}
$$

(10) d. Assume the resistor is made out of one kind of material and is a cylinder of radius $r=1 \mathrm{~mm}$ and the length $l=\pi \mathrm{m}$. What is the resistivity of the material?

$$
R=\rho \frac{L}{A}=\rho \frac{l}{\pi r^{2}}
$$

$$
\rho=\left(1 \times 10^{-3}\right) \Omega \mathrm{m}
$$

$\rho=\frac{R \pi r^{2}}{l}=\frac{\left(1 \times 10^{3} \Omega\right) \pi\left(1 \times 10^{-3} \mathrm{~m}\right)^{2}}{\pi(1 \mathrm{~m})}$
4. An infinitely long wire carries a current I_{0} in the positive x-direction along the x-axis.
(10) a. Use Ampere's Law to determine the magnitude of the magnetic field at P located at
 ($a,-b$) due to the current I_{0}. [a is positive. $-b$ is negative.]
$\oint \vec{B} \cdot d \vec{s}=\mu_{0} I_{e n c}$

$$
B=\frac{\mu_{0} I_{0}}{2 \pi b}
$$

$B(2 \pi b)=\mu_{0} I_{0}$
(10) b. Circle the direction of the magnetic field at P due to the current I_{0}.

$$
\begin{array}{llllll}
\hat{\imath} & -\hat{\imath} & \hat{\jmath} & -\hat{\jmath} & \hat{k} & -\hat{k}
\end{array}
$$

5. A circular loop of conducting wire of radius a and resistance R is in a region with a spatially uniform magnetic field $\vec{B}=\vec{B}_{0}\left(1-e^{-t / \tau}\right)$ that is normal to the plane of the loop, as illustrated.
(10) a. Determine the I_{I}, the magnitude of the current induced in the conducting loop.
$I=\frac{\varepsilon}{R}=\frac{1}{R}\left|\frac{d}{d t}[\vec{B} \cdot d \vec{A}]\right|$

$$
I_{i}=\frac{B_{0} \pi a^{2}}{R \tau} e^{-t / \tau}
$$

$I=\frac{1}{R}\left|\frac{d}{d t}\left[B_{0}\left(1-e^{-t / \tau}\right) \pi a^{2}\right]\right|$

6. An object is positioned 32 cm to the left of a lens. The image of the object is formed on a screen 8 cm to the right of the lens.
(15) a. Find the focal length of the lens. Is the lens converging or diverging?
$\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}$
$\frac{1}{32 \mathrm{~cm}}+\frac{1}{8 \mathrm{~cm}}=\frac{1}{f}$
$\frac{5}{32 \mathrm{~cm}}=\frac{1}{f}$
[Circle one.]
(5) b. Determine the magnification.

$$
m=-\frac{s^{\prime}}{s}=-\frac{8 \mathrm{~cm}}{32 \mathrm{~cm}}
$$

$$
m=-\frac{1}{4}
$$

7. A spherical concave shaving mirror has a radius of curvature of 28.0 cm . It is positioned so that the upright image of a man's face is 2.00 times the actual size of his face.
(15) a. How far is the mirror from the man's face?

$$
\begin{array}{ll}
m=-\frac{s^{\prime}}{s}=2 & \frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \\
s^{\prime}=-2 s & \frac{1}{s}-\frac{1}{2 s}=\frac{1}{14 \mathrm{~cm}} \\
f=\frac{1}{2} R=14 \mathrm{~cm} & \frac{1}{2 s}=\frac{1}{14 \mathrm{~cm}}
\end{array}
$$

(5) b. Where (how far from the mirror and on which side) is the image of the man's face located?

$$
s^{\prime}=-2 s=-2(7 \mathrm{~cm})=-14 \mathrm{~cm}
$$

$$
\left|s^{\prime}\right|=14 \mathrm{~cm}
$$

8. A spectrograph has resolving power of $R=900$ at wavelength $\lambda=360 \mathrm{~nm}$.
(10) a. Find the wavelength resolution, $\Delta \lambda$, of the spectrograph at $\lambda=360 \mathrm{~nm}$.

$$
R=\frac{\lambda}{\Delta \lambda} \quad \Delta \lambda=\frac{\lambda}{R}=\frac{360 \mathrm{~nm}}{900}
$$

$$
\Delta \lambda=0.4 \mathrm{~nm}
$$

(10) b. Determine how many diffraction grating lines must be illuminated to resolve two wavelengths near $\lambda=360 \mathrm{~nm}$ in first order.

$$
R=N m \quad N=\frac{R}{m}=\frac{900}{1}
$$

$$
N=900
$$

(10) c. If the spectrograph has a diffraction grating with 500 lines per cm , find the sine of the angular position for the first-order bright fringe.

$$
\begin{array}{ll}
\frac{m \lambda}{d}=\sin \theta & d=\left(\frac{500 \mathrm{lines}}{\mathrm{~cm}}\right)^{-1}=\frac{0.01 \mathrm{~m}}{500} \\
\sin \theta=\frac{(1)\left(360 \times 10^{-9} \mathrm{~m}\right)(500)}{0.01 \mathrm{~m}} &
\end{array}
$$

$$
\sin \theta=1.8 \times 10^{-2}
$$

9. A laser beam shines from air down on a thin layer of water (index of refraction $n_{w}>1$) which is placed on top of a glass (index of refraction $n_{g}<n_{w}$). The water layer has thickness t.
(10) Find the longest wavelength at which the laser light shining normal to the surface is maximally reflected. Give your answer in terms of given symbols and constants.

reflection	1
path	Odd
total	Even

$$
2 t=\left(m+\frac{1}{2}\right) \lambda_{w}=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{w}}
$$

Longest for $m=0$

$$
\lambda=4 t n_{w}
$$

