Exam Total

Physics 2135 Final Exam
May 11, 2022
Printed Name: \qquad
1200

1. A rod of length L has a total charge of $-Q$ uniformly distributed along its length. The rod is located on the y-axis with its bottom end a distance D from the origin (point O).
(30) a. Determine the magnitude and direction of the electric field at the origin (point O). Express your answer in unit vector notation.

$$
\vec{E}=
$$

(10) b. A point charge with charge $-3 Q$ is placed at the origin. Determine the magnitude and direction of the electric force on that charge.

$$
\vec{F}=
$$ Express your answer in unit vector notation.

2. Consider the given circuit with $R_{1}=1 \Omega, R_{2}=6 \Omega, R_{3}=12 \Omega$ and $V_{B}=10 \mathrm{~V}$.

(10) a. Determine the total equivalent resistance of the circuit R_{T}.

(10) b. Determine I_{1} the current through R_{1}.

(10) c. Determine the potential V_{3} across R_{3}.

(10) d. Determine the power P_{1} dissipated in R_{1}.

3. A current $/$ runs around a circle with radius of a. You want to find a magnetic field at the center O.
(6) (a) Give the proper OSE for this purpose.

(3) (b) Circle the direction of the magnetic field at the center O.
(i) \odot
(ii) \cup
(iii) \otimes
(iv) U
(6) (c) Find the magnitude of the magnetic field at the center O.

$$
B=
$$

4. Consider an ideal toroidal solenoid with N turns, each carrying a current I directed as shown in the figure. You want to find a magnetic field at the position P whose distance from the center is a, applying Ampere's law.
(6) (a) Give the proper OSE for this purpose.

(3) (b) Circle the direction of the magnetic field at P.
(i) \odot
(ii) \rightarrow
(iii) \otimes
(iv) \leftarrow
(6) (c) Find the magnitude of the magnetic field at the position P.

$$
B=
$$

5. A conducting square single loop with sides of length L is placed at the time $t=0$ in a region of uniform magnetic field $\vec{B}=B_{0} e^{-t / \tau} \hat{k}$ where B_{0} and τ are positive constants.
(10) Find the magnitude of the induced emf ε in the loop.

$$
\mathcal{E}=
$$

6. A light bulb is located 12 cm in front of a concave spherical mirror of radius 6 cm .
(5) a. Determine the type of image produced. [Circle the correct answer.]

Real Virtual
(5) b. Determine the orientation of the image produced. [Circle the correct answer.]

Upright Inverted
c. Determine the location of the image produced.

(5) d. Determine the magnification.

$$
m=
$$

7. An object is placed in front of a diverging lens, as illustrated.
(10) Determine the location of the image using a ray diagram. [You must show at least two correct rays and the location of the image to earn full credit.]

8. Light shines on a channel of unknown fluid normal to the surface, as illustrated. It is found that light of wavelength λ is maximally reflected. The width of the channel is w.
(20) Determine $n_{\text {fluid }}$ the index of refraction of the fluid. [Only consider reflections off the two channel/fluid interfaces and assume the channel is the smallest thickness resulting in maximal reflection.]

9. A laser shines upon a pair of slits producing an interference pattern on a screen beyond the pair of slits. The second dark fringe is located at a distance $y_{2 D}$ from the central maximum. [Assume the angles involved are small.]
(20) Determine $y_{2 B}$ the location of the second order bright fringe.

$$
y_{2 B}=
$$

