Exam Total	Physics 2135 Final Exam May 11, 2022	
	Printed Name:	
/200		↑ <i>y</i>
•	a total charge of $-Q$ uniformly distributed	

along its length. The rod is located on the *y*-axis with its bottom end a distance *D* from the origin (point *O*).

(30) a. Determine the *magnitude and direction* of the electric field at the origin (point O). Express your answer in unit vector notation.

0

L

D

x

(10) b. A point charge with charge -3Q is placed at the origin. Determine the *magnitude and direction* of the electric force on that charge. Express your answer in unit vector notation.

 $\vec{F} =$

/40

2. Consider the given circuit with $R_1 = 1 \Omega, R_2 = 6 \Omega, R_3 = 12 \Omega$ and $V_B = 10 V.$

(10) b. Determine I_1 the current through R_1 .

(10) c. Determine the potential V_3 across R_3 .

(10) d. Determine the power P_1 dissipated in R_1 .

≶

R2

6Ω

R3 12 Ω

r1 VVV

 1Ω

 V_B

10 V

 $P_1 =$

- **3.** A current *I* runs around a circle with radius of *a*. You want to find a magnetic field at the center *O*.
- (6) (a) Give the proper OSE for this purpose.

- (3) (b) Circle the direction of the magnetic field at the center *O*.

(i) • (ii) ・ (iii) * (iv) む

(6) (c) Find the magnitude of the magnetic field at the center O.

4. Consider an ideal toroidal solenoid with *N* turns, each carrying a current *I* directed as shown in the figure. You want to find a magnetic field at the position P whose distance from the center is *a*, applying Ampere's law.

(6) (a) Give the proper OSE for this purpose.

(3) (b) Circle the direction of the magnetic field at P.

(i) \odot (ii) \rightarrow

- (6) (c) Find the magnitude of the magnetic field at the position P.
 - *B* =

(iv) ←

5. A conducting square single loop with sides of length *L* is placed at the time t = 0 in a region of uniform magnetic field $\vec{B} = B_0 e^{-t/\tau} \hat{k}$ where B_0 and τ are positive constants.

(iii) ⊗

(10) Find the magnitude of the induced emf ε in the loop.

- 6. A light bulb is located 12cm in front of a concave spherical mirror of radius 6cm.
- (5) a. Determine the type of image produced. [Circle the correct answer.]

Real

(5) b. Determine the orientation of the image produced. [Circle the correct answer.]

Upright Inverted

Virtual

(15) c. Determine the location of the image produced.

	1	
, ,	1	
s' =	1	
5	1	
	1	

(5) d. Determine the magnification.

m =

- 7. An object is placed in front of a diverging lens, as illustrated.
- (10) Determine the location of the image using a ray diagram. [You must show at least two correct rays and the location of the image to earn full credit.]

- 8. Light shines on a channel of unknown fluid normal to the surface, as illustrated. It is found that light of wavelength λ is maximally reflected. The width of the channel is *w*.
- (20) Determine n_{fluid} the index of refraction of the fluid. [Only consider reflections off the two channel/fluid interfaces and assume the channel is the smallest thickness resulting in maximal reflection.]

11	Channel Wall	
	Fluid	_ } w
	Channel Wall	
]	$n_{fluid} =$	

- **9.** A laser shines upon a pair of slits producing an interference pattern on a screen beyond the pair of slits. The second dark fringe is located at a distance y_{2D} from the central maximum. [Assume the angles involved are small.]
- (20) Determine y_{2B} the location of the second order bright fringe.

/40