Exam Total

December 13, 2022
Printed Name: \qquad
/200

1. Positive charge Q is uniformly distributed on a semicircle of radius a centered at the origin (point P in the diagram).
(20) Find the electric field at P. Express your answer in unit vector notation using the coordinate system given.
$\vec{E}=\int_{0}^{\pi} k \frac{d Q}{r^{2}} \hat{r}=\int_{0}^{\pi} k \frac{\frac{Q}{\pi} d \phi}{a^{2}}(-\cos \phi \hat{\imath}-\sin \phi \hat{\jmath})$
$\vec{E}=\frac{k Q}{\pi a^{2}}[-\sin \phi \hat{\imath}+\cos \phi \hat{\jmath}]_{0}^{\pi}=\frac{k Q}{\pi z^{2}}(-1-1) \hat{\jmath}$

2. An electric dipole consists of charges $+Q$ and $-Q$ separated by a distance $2 a$. The dipole is located along the x-axis and is centered at the origin as shown.
(10) a. Calculate the electric potential at point P.
$V=k \frac{(-Q)}{x+a}+k \frac{Q}{x-a}=k Q\left(\frac{1}{x-a}-\frac{1}{x+a}\right)$
OR
$V=2 k Q\left(\frac{a}{x^{2}-a^{2}}\right)$

(10) b. If a point charge $+3 Q$ is placed at point R, determine the magnitude and direction of the electric force on this charge.
Express your answer in unit vector

$$
\vec{F}=-\frac{6 k Q^{2} a}{\left(a^{2}+L^{2}\right)^{3 / 2}} \hat{\imath}
$$

notation. By symmetry y-components cancel.

$$
\vec{F}=k \frac{(-Q) 3 Q}{r^{2}} \hat{r}_{-}+k \frac{(Q) 3 Q}{r_{+}^{2}} \hat{r}_{+}=-\frac{3 k Q^{2}}{\left(a^{2}+L^{2}\right)^{3 / 2}} a \hat{\imath}+\frac{3 k Q^{2}}{\left(a^{2}+L^{2}\right)^{3 / 2}} a(-\hat{\imath})
$$

3. A set of resistors with a total equivalent resistance R_{T} is connected in a circuit with a capacitor of capacitance C and an ideal battery with emf \mathcal{E}. [Answer in terms of given quantities.]
(10) a. Determine $t_{2 / 3}$ the time when the charge on the capacitor is two thirds of its final charge.

$Q=\frac{2}{3} Q_{f}=Q_{f}\left(1-e^{-t / R_{T} C}\right)$

$$
t_{2 / 3}=R_{T} C \ln 3
$$

$$
e^{-t / R_{T} C}=\frac{1}{3}
$$

(10) b. Determine $V_{R}\left(t_{2 / 3}\right)$ the potential across the combination of resistors when the charge on the capacitor is two thirds of its final charge.
$V_{R}=\mathcal{E}-V_{C}=\mathcal{E}-\frac{Q}{C}=\mathcal{E}-\frac{2 Q_{f}}{3 C}=\mathcal{E}-\frac{2}{3} \mathcal{E}$

$$
V_{R}\left(t_{2 / 3}\right)=\frac{1}{3} \varepsilon
$$

(10) c. Given that $R_{1}=4 \Omega, R_{2}=6 \Omega, R_{3}=18 \Omega$ and $R_{4}=8 \Omega$, determine R_{T} the total equivalent resistance of the combination of resistors.
$R_{23}=6 \Omega+18 \Omega=24 \Omega$
$R_{234}=\left(\frac{1}{24 \Omega}+\frac{1}{8 \Omega}\right)^{-1}=\left(\frac{1+3}{24 \Omega}\right)^{-1}=6 \Omega$

$$
R_{T}=10 \Omega
$$

$R_{T}=4 \Omega+6 \Omega$
(10) d. Given that $\mathcal{E}=24 \mathrm{~V}$, determine I_{1} the current through R_{1} just after the circuit is connected.

$$
\begin{aligned}
& V_{R}=\mathcal{E}-V_{C}=\mathcal{E} \\
& I_{1}=I_{R}=\frac{V_{R}}{R_{T}}=\frac{24 \mathrm{~V}}{10}
\end{aligned}
$$

4. A long straight wire carries a current l in the y direction (see figure). At one instant, a proton at a distance d from the wire, travels with speed v parallel to the wire and in the same direction as the current. Find:
(10) a. The magnitude of the magnetic force that is acting on the proton because of the magnetic field of the wire as a function of l, d, v, and any required constants from the OSE. Your answer must be symbolic.
$\vec{B}=\frac{\mu_{0} I}{2 \pi d}(-\hat{k})$

$$
\vec{F}=q \vec{v} \times \vec{B}=e v \hat{\jmath} \times \frac{\mu_{0} I}{2 \pi d}(-\hat{k})
$$

$F=\frac{\mu_{0} e v I}{2 \pi d}$
(10) b. The direction of the magnetic force that is acting on the proton because of the magnetic field of the wire. Your answer must be written in terms of the unit vectors $\boldsymbol{i}, \boldsymbol{j}$ or \boldsymbol{k}.
$\hat{\jmath} \times(-\hat{k})$
5. A straight solenoid consists of 100 turns of wire and has a length of 10.0 cm .
(10) Find the magnitude of the magnetic field inside the solenoid when it carries a current of 0.500 A . Your answer must be numerical and rounded to two significant figures. If you need π, use $\pi=3.14$.

$$
B=\mu_{0}\left(\frac{N}{L}\right) I=\left(4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}\right)\left(\frac{100}{0.1 \mathrm{~m}}\right)(0.500 \mathrm{~A})
$$

$$
B=6.3 \times 10^{-4} \mathrm{~T}
$$

6. Two parallel, long, straight wires carry currents of 5.00 A in opposite directions and are separated by 10.0 cm .
(10) Find the magnitude of the net magnetic field at a point midway between the wires. Your answer must be numerical and rounded to two significant figures. If you need π, use $\pi=3.14$.

$$
B=\frac{\mu_{0} I}{2 \pi\left(\frac{d}{2}\right)}+\frac{\mu_{0} I}{2 \pi\left(\frac{d}{2}\right)}=\frac{2 \mu_{0} I}{\pi d}=\frac{2\left(4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}\right)(5.00 \mathrm{~A})}{\pi(0.1 \mathrm{~m})}
$$

$$
B=4.0 \times 10^{-5} \mathrm{~T}
$$

7. A spherical concave mirror has a radius $R=30 \mathrm{~cm}$. An object is placed at 40 cm from the mirror.
(8) a. Determine the focal length of the mirror.
$f=\frac{R}{2}=\frac{30 \mathrm{~cm}}{2}$

$$
f=15 \mathrm{~cm}
$$

(7) b. Determine the image distance from the mirror.

$$
s^{\prime}=24 \mathrm{~cm}
$$

$$
\begin{aligned}
& \frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \\
& \frac{1}{15 \mathrm{~cm}}-\frac{1}{40 \mathrm{~cm}}=\frac{1}{s^{\prime}}
\end{aligned}
$$

$$
\frac{8-3}{120 \mathrm{~cm}}=s^{\prime}
$$

(5) c. Is the image UPRIGHT or INVERTED? (Circle one.)
8. An object is placed 30 cm in front of a diverging lens. It forms an image that is upright and $2 / 5$ times as tall as the object.
(8) a. Determine the image distance.

$$
\begin{gathered}
m=-\frac{s^{\prime}}{s} \\
\frac{2}{5}=-\frac{s^{\prime}}{30 \mathrm{~cm}}
\end{gathered}
$$

(7) b. Determine the focal point for the lens.
$\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}$
$\frac{1}{30 \mathrm{~cm}}+\frac{1}{-12 \mathrm{~cm}}=\frac{1}{f}$
(5) c. Is the image REAL o VIRTUAL? (Circle one.)
9. A monochromatic light source of wavelength λ shines on a pair of slits of separation d producing an interference pattern on a screen located a distance D beyond the slits. Please use the small angle approximation.
(10) a. Determine the location of the third bright fringe.

$$
y_{3 B}=\frac{3 \lambda D}{d}
$$

(10) b. Determine the location of the second dark fringe.

$$
y_{2 D}=\frac{3 \lambda D}{2 d}
$$

$\frac{\left(1+\frac{1}{2}\right) \lambda}{d}=\frac{y}{D}$

