Exam Total

Physics 2135 Final Exam
December 15, 2021
Printed Name: \qquad

1. A pair of charges are arranged as illustrated, where $q_{1}>0$ and $q_{2}>0$. The charge q_{1} is located at ($0, a$) and q_{2} at ($-\mathrm{b}, 0$).
(10) a. Determine the electric field at the origin produced by q_{1} and q_{2}.

$$
\vec{E}=
$$

(10) b. A third positive charge q_{3} is placed at the origin. Determine the electrical force experienced by q_{3} from q_{1} and q_{2}.

$$
\vec{F}=
$$

(10) c. Determine the work required to bring qu from far away to the origin.

$$
W=
$$

(10) d. Assuming q_{3} is at the origin, determine the potential energy of the charge arrangement $\mathrm{q}_{1}, \mathrm{q}_{2}$, and q_{3}.

$$
U=
$$

2. In the circuit shown, the voltage of the battery is 40 V . The resistors are: $R_{1}=17 \Omega, R_{2}=4 \Omega$, and $R_{3}=12 \Omega$.

(10) a. Determine the total equivalent resistance of this circuit.

$$
R_{T}=
$$

(10) b. Determine the total current of this circuit.

$$
I_{T}=
$$

(10) c. Determine the voltage across the R_{2} resistor.

$$
V_{2}=
$$

(10) d. Determine the power dissipated in the R_{3} resistor.

3. A conducting square loop with sides of length L and resistance R is pulled with steady speed v out of region of uniform magnetic field B pointing out of the page, as shown in the figure.
(10) a. Start with Faraday's law and find the magnitude of the electrical current I induced in the loop.

$I=$
(5) b. What is the direction of the current induced in the loop? (circle one)

CLOCKWISE COUNTERCLOCKWISE

(5) c. What is the direction of the net force produced by the uniform magnetic field on the loop? (circle one)
4. A He-Ne laser produces a cylindrical beam of light of diameter d. The laser beam is directed at normal incidence on the center of a square, perfectly absorbing plate having an edge length L much greater than the diameter of the laser beam. The magnetic field amplitude of the laser beam as it comes out of the laser
 is $B_{\text {max }}$.
(10) a. What radiation force F does the laser beam exert on the square plate?

$$
F=
$$

(10) b. Determine the power output P of the laser.

5. A spherical concave mirror has a radius of curvature of 32.0 cm . An object is placed 12.0 cm to the left of the mirror.
(10) a. What is the image distance?

$$
s^{\prime}=
$$

(5) b. The image is a image. [Circle the correct word to put in the
blank.]

REAL

VIRTUAL

(5) c. What is the magnification?

$$
m=
$$

6. An object is positioned 12 cm to the left of a lens. The image of the object is formed on a screen 6 cm to the right of the lens.
(10) a. Find the focal length of the lens.

$$
f=
$$

(5) b. The lens is a \qquad lens. [Circle the correct word to put in the blank.]

CONVERGING
DIVERGING
(5) b. Determine the magnification.

7. A 400 nm light source shines on a $2 \mu \mathrm{~m}$ wide slit that is 6 m in front of a screen. [Use the small angle approximation.]
(15) Determine the distance on the screen from the central maximum to the first order dark fringe.

$$
y_{1}=
$$

8. A $0.2 \mu \mathrm{~m}$ thick layer of oil with an index of refraction of 1.5 lies on top of a transparent plate with an index of refraction of 1.4. Light is normally incident on the combination from above as illustrated.

Oil, $n_{o}=1.5$
(15) Determine the longest wavelength of light that will be maximally reflected.

Plate, $n_{p}=1.4$

9. A diffraction grating with 1000 lines $/ \mathrm{mm}$ is used to resolve light from two light sources with wavelengths of 604 nm and 596 nm .
(10) Determine the number of lines that must be illuminated to resolve the two light sources in $3^{\text {rd }}$ order.

$$
N=
$$

