Official Starting Equations

PHYS 2135, Engineering Physics II

From PHYS 1135:
$x=x_{0}+v_{0 x} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} \quad v_{x}=v_{0 x}+a_{x} \Delta t \quad v_{x}^{2}=v_{0 x}^{2}+2 a_{x}\left(x-x_{0}\right) \quad \sum \vec{F}=m \vec{a}$
$F_{r}=-\frac{m v_{t}^{2}}{r} \quad P=\frac{F}{A} \quad \vec{p}=m \vec{v} \quad P=\frac{d W}{d t} \quad W=\int \vec{F} \cdot d \vec{s}$
$K=\frac{1}{2} m v^{2} \quad U_{f}-U_{i}=-W_{\text {conservative }} \quad E=K+U \quad E_{f}-E_{i}=\left(W_{\text {other }}\right)_{i \rightarrow f} \quad E=P_{\text {ave }} t$

Constants:

$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad m_{\text {electron }}=9.11 \times 10^{-31} \mathrm{~kg}$
$m_{\text {proton }}=1.67 \times 10^{-27} \mathrm{~kg}$
$e=1.6 \times 10^{-19} \mathrm{C}$
$c=3.0 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \quad k=\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \quad \epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}} \quad \mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{\mathrm{A}}$

Electric Force, Field, Potential and Potential Energy:

$\vec{F}=k \frac{q_{1} q_{2}}{r_{12}^{2}} \hat{r}_{12}$
$\vec{E}=k \frac{q}{r^{2}} \hat{r}$
$\vec{F}=q \vec{E}$
$\Delta V=-\int_{i}^{f} \vec{E} \cdot d \vec{s}$
$U=k \frac{q_{1} q_{2}}{r_{12}}$
$V=k \frac{q}{r}$
$\Delta U=q \Delta V$
$E_{x}=-\frac{\partial V}{\partial x}$
$\vec{p}=q \vec{d}($ from - to +$)$
$\vec{\tau}=\vec{p} \times \vec{E}$
$U_{\text {dipole }}=-\vec{p} \cdot \vec{E}$
$\Phi_{E}=\int_{S} \vec{E} \cdot d \vec{A}$
$\oint_{S} \vec{E} \cdot d \vec{A}=\frac{q_{\text {enclosed }}}{\epsilon_{0}}$
$\lambda \equiv \frac{\text { charge }}{\text { length }}$
$\sigma \equiv \frac{\text { charge }}{\text { area }} \quad \rho \equiv \frac{\text { charge }}{\text { volume }}$

Circuits:

$C=\frac{Q}{V} \quad \frac{1}{c_{T}}=\sum \frac{1}{c_{i}}$
$C_{T}=\sum C_{i}$
$C_{0}=\frac{\epsilon_{0} A}{d}$
$C=\kappa C_{0}$
$U=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} Q V$
$I=\frac{d q}{d t}$
$J=\frac{I}{A}$
$\vec{J}=n q \vec{v}_{d}$
$\vec{J}=\sigma \vec{E} \quad V=I R$
$R=\rho \frac{L}{A}$
$\sigma=\frac{1}{\rho}$
$\rho=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right]$
$\sum I=0$
$\sum \Delta V=0$
$Q(t)=Q_{\text {final }}\left[1-e^{-t / \tau}\right]$
$\frac{1}{R_{T}}=\sum \frac{1}{R_{i}}$
$R_{T}=\sum R_{i}$
$P=I V=\frac{V^{2}}{R}=I^{2} R$
$Q(t)=Q_{0} e^{-t / \tau} \quad \tau=R C$

Integral:

$\int \frac{d u}{\left(u^{2}+a^{2}\right)^{3 / 2}}=\frac{u}{a^{2} \sqrt{u^{2}+a^{2}}}+c$

Magnetic Force, Field and Inductance:

$\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})$
$\vec{F}=I \vec{L} \times \vec{B}$
$\Phi_{B}=\int \vec{B} \cdot d \vec{A}$
$\oint \vec{B} \cdot d \vec{A}=0$
$\oint \vec{B} \cdot d \vec{s}=\mu_{0} I_{\text {enclosed }}$
$\vec{\mu}=N I \vec{A}$
$\vec{\tau}=\vec{\mu} \times \vec{B}$
$U_{\text {dipole }}=-\vec{\mu} \cdot \vec{B}$
$\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{q \vec{v} \times \hat{r}}{r^{2}}$
$d \vec{B}=\frac{\mu_{0} I}{4 \pi} \frac{d \vec{s} \times \hat{r}}{r^{2}}$
$\mathcal{E}=-N \frac{d \Phi_{B}}{d t}$
$\oint \vec{E} \cdot d \vec{s}=-\frac{d \phi_{B}}{d t}$
$\oint \vec{B} \cdot d \vec{s}=\mu_{0} I_{\text {enclosed }}+\mu_{0} \epsilon_{0} \frac{d \phi_{E}}{d t}$
$B=\frac{\mu_{0} I}{2 \pi r}$
$B=\mu_{0} n I$

Electromagnetic Waves:

$I=\frac{P}{A}$
$u=\frac{1}{2}\left(\epsilon_{0} E^{2}+\frac{B^{2}}{\mu_{0}}\right)=\epsilon_{0} E^{2}=\frac{B^{2}}{\mu_{0}}$
$\langle u\rangle=\frac{1}{4}\left(\epsilon_{0} E_{\max }^{2}+\frac{B_{\max }^{2}}{\mu_{0}}\right)=\frac{1}{2} \epsilon_{0} E_{\max }^{2}=\frac{B_{\max }^{2}}{2 \mu_{0}}$
$\frac{E}{B}=c=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}$
$\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}$
$I=\langle S\rangle=c\langle u\rangle$
$\left\langle P_{\mathrm{rad}}\right\rangle=\frac{I}{c}$ or $\frac{2 I}{c}$
$k=\frac{2 \pi}{\lambda}$
$\omega=2 \pi f$
$T=\frac{1}{f}$
$v=f \lambda=\frac{\omega}{k}=\frac{c}{n}$

Optics:

$I=I_{\text {max }} \cos ^{2} \phi$
$\theta_{r}=\theta_{i}$
$n=\frac{c}{v}=\frac{\lambda_{0}}{\lambda_{n}}$
$n_{r} \sin \theta_{r}=n_{i} \sin \theta_{i}$
$\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}$
$m=\frac{y^{\prime}}{y}=-\frac{s^{\prime}}{s}$
$\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$f=\frac{R}{2}$
$\frac{n_{a}}{s}+\frac{n_{b}}{s^{\prime}}=\frac{n_{b}-n_{a}}{R}$
$m=\frac{y^{\prime}}{y}=-\frac{n_{a} s^{\prime}}{n_{b} s}$
$\Delta L=m \lambda$
$\Delta L=\left(m+\frac{1}{2}\right) \lambda$
$\Delta L=d \sin \theta$
$\phi=2 \pi\left(\frac{\Delta L}{\lambda}\right)$
$I=I_{0} \cos ^{2} \frac{\phi}{2}$
$R=\frac{\lambda}{\Delta \lambda}=N m$
$m \lambda=a \sin \theta$
$\beta=\frac{2 \pi}{\lambda} a \sin \theta$
$I=I_{0}\left[\frac{\sin (\beta / 2)}{\beta / 2}\right]^{2}$

Integral:
$\int \frac{d u}{\left(u^{2}+a^{2}\right)^{3 / 2}}=\frac{u}{a^{2} \sqrt{u^{2}+a^{2}}}+c$

Exam Total

PHYS 2135 Exam III

April 19, 2022
Name: \qquad Section: \qquad

For questions 1-5, select the best answer. For problems 6-9, solutions must begin with an Official Starting Equation, when appropriate. Work must be shown to receive credit. Calculators are not allowed. Use appropriate units. Provide answers in terms of given variable and fundamental constants.
(8) \qquad 1. An electron is initially moving away from a long straight wire that is carrying a current as illustrated.
Determine the initial direction of the magnetic force acting on the electron.
[A] To the right
[B] Up
[D] To the left
[E] Down
[C]
[F] Into the page
(8)
2. The illustration shows a cross-section of a solenoid with the direction of current. Circle the direction of the magnetic field at the center of the solenoid.

(8) \qquad 3. A long straight wire carries a current I_{0}. A conducting loop near the wire is moved with constant velocity \vec{v} as illustrated. The induced current in the loop is ...
[A] Zero
[B] Down
[C] Up
[D] Clockwise

[E] Counter-Clockwise
(8) \qquad 4. Light originating in air enters a block as shown. Determine n_{B} the index of refraction of the block.
[A] $\quad n_{B}=\frac{1}{\sqrt{3}}$
[B] $\quad n_{B}=\frac{\sqrt{2}}{2}$
[C] $\quad n_{B}=\frac{\sqrt{3}}{2}$

[D] $\quad n_{B}=\sqrt{3}$
(8) \qquad 5.
6. A nuclei with positive charge q_{1} and velocity $\vec{v}_{1}=v_{1} \hat{\jmath}$ passes through the point $(-2 a, 0,0)$ at a given instant in time just as a charged particle q_{2} with velocity $\vec{v}_{2}=v_{2} \hat{\imath}$ passes through the origin $(0,0,0) . z$ is out of the page.

(10) a. Determine the magnetic field produced by q_{1} at the origin at this instant.

$$
\vec{B}_{1}=
$$

(10) b. Determine the magnetic field produced by q_{2} at the location of q_{1} at this instant.
$\vec{B}_{2}=$
(10) c. Determine the magnetic force q_{1} exerts on q_{2} at this instant.
$\vec{F}_{12}=$
(10) d. Determine the magnetic force q_{2} exerts on q_{1} at this instant. (Hint: Do not assume it is equal and opposite to the answer to part c.)

$$
\vec{F}_{21}=
$$

7. An infinitely long straight wire of radius a carries a uniform current I_{0} into the page as illustrated.
a. Use Ampere's Law to derive the magnitude of the magnetic field at point P, a distance b from the center of the wire.

(5) b. Select the direction of the magnetic field at point P.

c. Use Ampere's Law to derive the magnitude of the magnetic field inside the wire at a distance $r<a$ from the center of the wire.

(5) d. Sketch the magnetic field at a distance $r<a$ from the center of the wire.

8. A rectangular conducting loop with sides of length a and b and total resistance R is pulled through a region of constant magnetic field Bout (inside the dashed box). The loop is pulled so that it maintains a constant velocity \mathbf{v}. The diagram shows the loop at 3 different times.
a. At which of the three times is the magnetic flux through the loop the greatest and what is the value of the magnetic flux at that time?

$\operatorname{Max} \Phi_{B}$ at $t=$
$\Phi_{B}=$

b. What is the magnitude and direction (circle correct direction) of the induced current in the loop at each time? You must justify your answers for the directions of the induced current. Provide answers in terms of given quantities.

At $t=t_{1}, I=$
CW CCW None Up Down
At $t=t_{2}, I=$
CW CCW None Up Down
At $t=t_{3}, I=$
CW CCW None Up Down

c. What is the magnitude and direction of the magnetic force on the loop at each time? Provide answers in terms of given quantities.

At $t=t_{1}, \vec{F}=$
At $t=t_{2}, \vec{F}=$
At $t=t_{3}, \vec{F}=$

9. The James Webb Space Telescope (JWST) observes signals from very early Universe at the L2 point, 1.6 million km away from the earth. JWST sends the signals through a 24 GHz frequency channel to NASA's dish antenna with diameter of 32 m on the earth. The average total power received at the antenna is 4×10^{-13} watts. $\left[1 \mathrm{GHz}=1 \times 10^{9} \mathrm{~Hz}\right]$
(10) a. What is the wavelength of the radiation JWST sends?

(15) b. Determine the power which JSWT radiates, assuming that the radiation is uniformly transmitted by JWST.

(15) c. Find the force exerted by the radiation on the antenna when the radiation is absorbed by the antenna. Set the answer for b) as P, the distance between the earth and L2 as R, and the antenna diameter as D. Give a symbolic answer.

