Official Starting Equations PHYS 2135, Engineering Physics II

From PHYS 1135:

$$x = x_0 + v_{0x}\Delta t + \frac{1}{2}a_x(\Delta t)^2$$
 $v_x = v_{0x} + a_x\Delta t$ $v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$ $\sum \vec{F} = m\vec{a}$

$$v_x = v_{0x} + a_x \Delta t$$

$$v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$$

$$\sum \vec{F} = m\vec{a}$$

$$F_r = -\frac{mv_t^2}{r}$$

$$P = \frac{F}{A}$$

$$\vec{p} = m\vec{v}$$

$$P = \frac{dW}{dt}$$

$$F_r = -\frac{mv_t^2}{r}$$
 $P = \frac{F}{A}$ $\vec{p} = m\vec{v}$ $P = \frac{dW}{dt}$ $W = \int \vec{F} \cdot d\vec{s}$

$$K = \frac{1}{2}mv^2$$

$$K = \frac{1}{2}mv^2$$
 $U_f - U_i = -W_{\text{conservative}}$ $E = K + U$ $E_f - E_i = (W_{\text{other}})_{i \to f}$ $E = P_{\text{ave}}t$

$$E = K + U$$

$$E_f - E_i = (W_{\text{other}})_{i \to f}$$

$$E = P_{\text{ave}}t$$

Constants:

$$g = 9.8 \frac{m}{c^2}$$

$$m_{\text{electron}} = 9.11 \times 10^{-31} \text{kg}$$

$$g = 9.8 \frac{\text{m}}{\text{s}^2}$$
 $m_{\text{electron}} = 9.11 \times 10^{-31} \text{kg}$ $m_{\text{proton}} = 1.67 \times 10^{-27} \text{kg}$ $e = 1.6 \times 10^{-19} \text{C}$

$$e = 1.6 \times 10^{-19}$$

$$c = 3.0 \times 10^8 \, \frac{\mathrm{m}}{\mathrm{s}}$$

$$c = 3.0 \times 10^8 \frac{\text{m}}{\text{s}} \qquad k = \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \frac{\text{Nm}^2}{\text{C}^2} \qquad \epsilon_0 = 8.85 \times 10^{-12} \frac{\text{C}^2}{\text{Nm}^2} \qquad \mu_0 = 4\pi \times 10^{-7} \frac{\text{Tm}}{\text{A}}$$

$$\epsilon_0 = 8.85 \times 10^{-12} \frac{\text{C}^2}{\text{Nm}^2}$$

$$\mu_0 = 4\pi \times 10^{-7} \frac{\text{Tm}}{\text{A}}$$

Electric Force, Field, Potential and Potential Energy:

$$\vec{F} = k \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}$$

$$\vec{E} = k \frac{q}{r^2} \hat{r}$$

$$\vec{F} = q\vec{E}$$

$$\vec{E} = k \frac{q}{r^2} \hat{r}$$
 $\vec{F} = q \vec{E}$ $\Delta V = -\int_i^f \vec{E} \cdot d\vec{s}$

$$U = k \frac{q_1 q_2}{r_{12}}$$

$$V = k \frac{q}{r}$$

$$\Delta U = q \Delta V$$

$$V=krac{q}{r}$$
 $\Delta U=q\Delta V$ $E_x=-rac{\partial V}{\partial x}$

$$ec{p} = q ec{d}$$
 (from $-$ to +) $ec{ au} = ec{p} imes ec{E}$ $U_{
m dipole} = -ec{p} \cdot ec{E}$

$$\vec{\tau} = \vec{p} \times \vec{E}$$

$$U_{\rm dipole} = -\vec{p} \cdot \bar{E}$$

$$\Phi_E = \int_{S} \vec{E} \cdot d\vec{A}$$

$$\Phi_E = \int_{\mathcal{S}} \; \vec{E} \cdot d\vec{A} \qquad \qquad \oint_{\mathcal{S}} \; \vec{E} \cdot d\vec{A} = \frac{q_{\rm enclosed}}{\epsilon_0} \qquad \qquad \lambda \equiv \frac{\rm charge}{\rm length} \qquad \qquad \sigma \equiv \frac{\rm charge}{\rm area} \qquad \qquad \rho \equiv \frac{\rm charge}{\rm volume}$$

$$\lambda \equiv \frac{\text{charge}}{\text{length}}$$

$$\sigma \equiv \frac{\text{charge}}{\text{area}}$$

$$\rho \equiv \frac{\text{charge}}{\text{volume}}$$

Circuits:

$$C = \frac{Q}{V}$$

$$C = \frac{Q}{V} \qquad \frac{1}{CT} = \sum \frac{1}{Ct}$$

$$C_T = \sum C_i$$

$$C_T = \sum C_i$$
 $C_0 = \frac{\epsilon_0 A}{d}$ $C = \kappa C_0$

$$C = \kappa C_0$$

$$U = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}QV$$

$$I = \frac{dq}{dt}$$

$$J = \frac{I}{A}$$

$$I = rac{dq}{dt}$$
 $J = rac{I}{A}$ $ec{J} = nqec{v}_d$

$$\vec{J} = \sigma \vec{E}$$

$$V = IR$$

$$R = \rho \frac{L}{A}$$

$$\sigma = \frac{1}{\rho}$$

$$\vec{J} = \sigma \vec{E}$$
 $V = IR$ $R = \rho \frac{L}{A}$ $\sigma = \frac{1}{\rho}$ $\rho = \rho_0 [1 + \alpha (T - T_0)]$

$$\sum I = 0$$

$$\sum I = 0$$
 $\sum \Delta V = 0$

$$\frac{1}{R_T} = \sum \frac{1}{R_i}$$

$$R_T = \sum R_i$$

$$\frac{1}{R_T} = \sum \frac{1}{R_i} \qquad \qquad R_T = \sum R_i \qquad \qquad P = IV = \frac{V^2}{R} = I^2 R$$

$$Q(t) = Q_{\text{final}} \left[1 - e^{-t/\tau} \right]$$

$$Q(t) = Q_0 e^{-t/\tau} \qquad \qquad \tau = RC$$

$$\tau = RC$$

Integral:

$$\int \frac{du}{(u^2 + a^2)^{3/2}} = \frac{u}{a^2 \sqrt{u^2 + a^2}} + c$$

Magnetic Force, Field and Inductance:

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

$$\vec{F} = I\vec{L} \times \vec{B}$$

$$\Phi_B = \int \vec{B} \cdot d\vec{A} \qquad \qquad \oint \vec{B} \cdot d\vec{A} = 0$$

$$\oint \vec{B} \cdot d\vec{A} = 0$$

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{\text{enclosed}}$$

$$\vec{\mu} = NI\vec{A}$$

$$ec{ au}=ec{\mu} imesec{B}$$

$$U_{\rm dipole} = -\vec{\mu} \cdot \vec{B}$$

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$$

$$d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{s} \times \vec{n}}{r^2}$$

$$\mathcal{E} = -N \frac{d\Phi_{I}}{dt}$$

$$d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{s} \times \hat{r}}{r^2} \qquad \qquad \mathcal{E} = -N \frac{d\Phi_B}{dt} \qquad \qquad \oint \vec{E} \cdot d\vec{s} = -\frac{d\phi_B}{dt}$$

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{\text{enclosed}} + \mu_0 \epsilon_0 \frac{d\phi_E}{dt}$$

$$B = \frac{\mu_0 I}{2\pi r} \qquad \qquad B = \mu_0 n I$$

$$B = \mu_0 n I$$

Electromagnetic Waves:

$$I = \frac{P}{A}$$

$$u = \frac{1}{2} \left(\epsilon_0 E^2 + \frac{B^2}{\mu_0} \right) = \epsilon_0 E^2 = \frac{B^2}{\mu_0}$$

$$u = \frac{1}{2} \left(\epsilon_0 E^2 + \frac{B^2}{\mu_0} \right) = \epsilon_0 E^2 = \frac{B^2}{\mu_0} \qquad \langle u \rangle = \frac{1}{4} \left(\epsilon_0 E_{\text{max}}^2 + \frac{B_{\text{max}}^2}{\mu_0} \right) = \frac{1}{2} \epsilon_0 E_{\text{max}}^2 = \frac{B_{\text{max}}^2}{2\mu_0}$$

$$\frac{E}{B} = c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} \qquad \qquad \vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \qquad \qquad I = \langle S \rangle = c \langle u \rangle$$

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{E}$$

$$I = \langle S \rangle = c \langle u \rangle$$

$$\langle P_{\rm rad} \rangle = \frac{I}{c} \text{ or } \frac{2I}{c}$$

$$k = \frac{2\pi}{\lambda}$$

$$\omega = 2\pi f \qquad \qquad T = \frac{1}{f}$$

$$T = \frac{1}{f}$$

$$v = f\lambda = \frac{\omega}{k} = \frac{c}{n}$$

Optics:

$$I = I_{\text{max}} \cos^2 \phi$$
 $\theta_r = \theta_i$ $n = \frac{c}{n} = \frac{\lambda_0}{\lambda_0}$

$$\theta_r = \theta_i$$

$$n = \frac{c}{v} = \frac{\lambda_0}{\lambda_n}$$

$$n_r \sin \theta_r = n_i \sin \theta_i$$

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$

$$m = \frac{y'}{y} = -\frac{s'}{s}$$

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f} \qquad m = \frac{y'}{y} = -\frac{s'}{s} \qquad \frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) \qquad f = \frac{R}{2}$$

$$f = \frac{R}{2}$$

$$\frac{n_a}{s} + \frac{n_b}{s'} = \frac{n_b - n_c}{R}$$

$$\frac{n_a}{s} + \frac{n_b}{s'} = \frac{n_b - n_a}{R} \qquad m = \frac{y'}{y} = -\frac{n_a s'}{n_b s} \qquad \Delta L = m\lambda$$

$$\Delta L = m\lambda$$

$$\Delta L = \left(m + \frac{1}{2}\right)\lambda$$

$$\Delta L = d \sin \theta$$

$$\Delta L = d \sin \theta$$
 $\phi = 2\pi \left(\frac{\Delta L}{\lambda}\right)$ $I = I_0 \cos^2 \frac{\phi}{\lambda}$

$$I = I_0 \cos^2 \frac{\phi}{2}$$

$$R = \frac{\lambda}{\Lambda \lambda} = Nm$$

$$m\lambda = a\sin\theta$$

$$\beta = \frac{2\pi}{\lambda} a \sin \theta$$

Integral:

$$\int \frac{du}{(u^2 + a^2)^{3/2}} = \frac{u}{a^2 \sqrt{u^2 + a^2}} + c$$

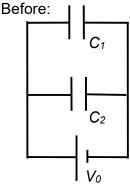
Exam Total	
	/200
For questions 1-5, se	lect the
with an Official Startir	ng Equa
credit. Calculators ar	e not all

PHYS 2135 Exam II March 21, 2023

	/200	Name:		Section:
with a credit	uestions 1-5, select the n Official Starting Equa . Calculators are not al variable and fundamen	tion, when appropr lowed. Use approp	iate. Work must be s	shown to receive
(8)	field in the wire of E_0 . To in the wire of E_f . Select [A] $E_f = \frac{1}{2}E_0$ [B] $E_f = E_0$ [C] $E_f = 2E_0$ [D] $E_f = 4E_0$	he potential is then i	<u> </u>	
(8)	Select the correct states [A] $R_{12} < R_1$ [B] $R_1 < R_{12} < R_2$ [C] $R_2 < R_{12}$ [D] There is insufficient	nent about the comb	ined resistance R_{12} .	
(8)	B 3. A current loop illustrated. Select the di [A] Right [C] Up	_		field as \vec{B}
(8)	B 4. An initially unand a resistor reaches houncharged capacitor is a $\mathcal{E}_2=2V_0$. How long does second circuit? [A] $\left(\frac{1}{2}\right)t_{1/2}$ [B] $t_{1/2}$ [C] $2t_{1/2}$ [D] $4t_{1/2}$	alf of its full charge i connected in series v	vith the same resistor a	cuit, the same and a battery with
(8)	ABCD 5. (Free) [A] He wrote his current [B] He and Bunsen (as [C] He coined the phras	and voltage laws wl in burner) invented t	he spectroscope.	v Kirchhoff.
		erfect absorber/emitte elationship between	er.	/40

- **6.** Two capacitors with capacitance C_1 = C and C_2 = 2C are connected across a potential difference V_0 as shown. While the capacitors are left connected to the battery, a dielectric slab with an unknown dielectric constant is inserted into capacitor C_1 completely filling the region between its plates. The total energy stored in the two capacitors is found to increase by a factor of 4. Calculate
- (20) a. the total energy stored in the two capacitors **before** the dielectric is inserted, and

$$U_0 = \frac{1}{2}C_{T0}V_0^2 = \frac{1}{2}(C + 2C)V_0^2$$



$$U_0 = \frac{3}{2}CV_0^2$$

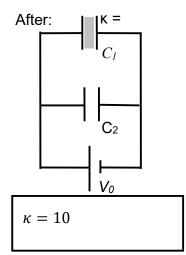
(20) b. the dielectric constant of the slab.

$$U_f = 4U_0$$

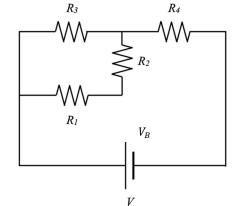
$$\frac{1}{2}C_{Tf}V_0^2 = 4\left(\frac{3}{2}CV_0^2\right)$$

$$\frac{1}{2}(\kappa C + 2C)V_0^2 = 6CV_0^2$$

$$\kappa + 2 = 12$$



7. Consider an electric circuit shown here with the given values: $R_I = 0.5 \ \Omega$, $R_2 = 1.5 \ \Omega$, $R_3 = 2 \ \Omega$, $R_4 = 0.5 \ \Omega$ and $V_B = 1.5 \ V$.



(15) a. Calculate the equivalent resistance of the entire circuit.

$$R_T = 1.5\Omega$$

$$R_{12} = R_1 + R_2 = .5\Omega + 1.5\Omega = 2\Omega$$

$$R_{123} = \left(\frac{1}{R_{12}} + \frac{1}{R_3}\right)^{-1} = \left(\frac{1}{2\Omega} + \frac{1}{2\Omega}\right)^{-1} = 1\Omega$$

$$R_T = R_{123} + R_4 = 1\Omega + 0.5\Omega$$

(10) b. Find the voltage across R_3 when $I_1 = 0.5$ A.

$$V_3 = V_{12} = I_{12}R_{12} = I_1R_{12} = (.5A)(2\Omega) = 1V$$

$$V_3 = 1V$$

(5) c. Provide the total electric power consumed by the entire circuit in terms of V_B and I_4 (current through R_4).

$$P_T = I_T V_T = I_4 V_B$$

$$P_T = I_4 V_B$$

(10) d. Assume the resistor R_4 is in the shape of a long cylinder and is made of materials with an electrical resistivity of $0.5~\Omega$ m. What is its diameter when it is $1.0~\mathrm{m}$ long? Express your answer in terms of π .

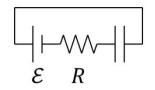
$$R = \rho \frac{L}{A} = \rho \frac{L}{\pi \left(\frac{d}{2}\right)^2}$$

$$d = \frac{2}{\sqrt{\pi}} \,\mathrm{m}$$

$$d^2 = \frac{4\rho L}{\pi R}$$

$$d = 2\sqrt{\frac{\rho L}{\pi R}} = 2\sqrt{\frac{(0.5\Omega \text{m})(1\text{m})}{\pi (0.5\Omega)}} = \frac{2}{\sqrt{\pi}}\text{m}$$

8. A battery with emf \mathcal{E} is connected to an initially uncharged capacitor and a resistor with resistance R, as illustrated. The circuit is connected at t=0. At $t_1=\tau \ln 4$, the charge on the capacitor is Q_1 .



 $Q_f = \frac{4}{3}Q_1$

Determine the charge on the capacitor after a long time. (15)[Answer in terms of Q_1 , \mathcal{E} and R, not in terms of \mathcal{C} or τ .]

$$Q_1 = Q_f \left(1 - e^{-\tau \ln 4/\tau}\right)$$

$$Q_1 = Q_f (1 - e^{\ln(1/4)})$$

$$Q_1 = Q_f \left(1 - \frac{1}{4} \right)$$

$$Q_1 = \frac{3}{4}Q_f$$

(10)Determine V_{C1} the potential across the capacitor at $t_1 = \tau \ln 4$. [Answer in terms of C, Q_1 , \mathcal{E} and R.]

$$V_{C1} = \frac{Q_1}{C} \text{ or } V_{C1} = \frac{3}{4} \mathcal{E}$$

(15)Determine I_1 the current through the resistor at $t_1 = \tau \ln 4$. [Answer in terms of C, Q_1 , \mathcal{E} and R.]

$$V_R = \mathcal{E} - V_{C1} = \mathcal{E} - \frac{Q_1}{C}$$

$$I = \frac{dQ}{dt} = \frac{\varepsilon}{R} e^{-t/\tau}$$

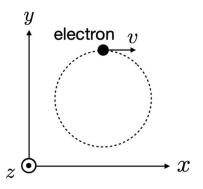
[Answer in terms of
$$\mathcal{C}$$
, \mathcal{Q}_1 , \mathcal{E} and \mathcal{K} .]
$$V_R = \mathcal{E} - V_{C1} = \mathcal{E} - \frac{Q_1}{C} \qquad I = \frac{dQ}{dt} = \frac{\mathcal{E}}{R} e^{-t/\tau} \qquad I_1 = \frac{\mathcal{E}}{R} - \frac{Q_1}{RC} \text{ or } I_1 = \frac{\mathcal{E}}{4R} \text{ or } I_1 = \frac{Q_1}{3RC}$$
or
$$I = \frac{dQ}{dt} = \frac{\mathcal{E}}{R} e^{-t/\tau}$$

$$I_1 = \frac{V_R}{R} = \frac{\mathcal{E}}{R} - \frac{Q_1}{RC}$$

$$I_1 = \frac{\varepsilon}{R} e^{\ln(1/4)} = \frac{\varepsilon}{4R}$$

It can be shown that $\frac{Q_1}{RC} = \frac{3Q_f}{4RC} = \frac{3\mathcal{E}}{4R}$. Thus, $\frac{\mathcal{E}}{R} - \frac{Q_1}{RC} = \frac{\mathcal{E}}{4R}$

9. An electron (mass m and charge -e) experiences a helical motion under the influence of a uniform magnetic field. It has a constant motion along z axis, while it has a circular motion with velocity v and period T in (x,y) plane, as shown.



(10) a. Determine the radius of the circular motion **in terms of given symbols**.

$$v = \frac{2\pi R}{T}$$

$$R = \frac{vT}{2\pi}$$

(15) b. Determine the magnetic field. Give an answer in a vector notation with given symbols.

$$\vec{F} = q\vec{v} \times \vec{B}$$

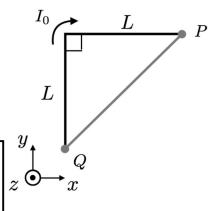
At the moment illustrated,

$$\vec{B} = -\frac{2\pi m}{eT}\hat{k}$$

$$\frac{mv^2}{R}(-\hat{j}) = -ev\hat{\imath} \times \vec{B}$$

Thus,
$$\hat{B} = -\hat{k}$$
 and $\frac{mv^2}{R} = evB$ $B = \frac{mv}{eR} = \frac{mv}{e} \left(\frac{2\pi}{vT}\right)$

10. A loop carries a current I_0 in a uniform magnetic field $\vec{B} = B_0 (\hat{j} + \hat{k})$. The loop is an isosceles right triangle with length L as illustrated.



(15) c. Determine the magnetic force on the portion PQ. Give an answer in a vector notation.

$$\vec{F}_{left} + \vec{F}_{top} + \vec{F}_{PQ} = 0$$
 $\vec{F} = I_0 L B_0 (-\hat{\imath} + \hat{\jmath} - \hat{k})$

$$\vec{F}_{PQ} = I_0 L B_0 (-\hat{k} + \hat{j}) + I_0 L B_0 (-\hat{i})$$

 $\vec{F}_{PO} = -I_0 L \hat{\imath} \times B_0 (\hat{\jmath} + \hat{k}) - I_0 L \hat{\jmath} \times B_0 (\hat{\jmath} + \hat{k})$

Or

$$\vec{F}_{PQ} = I_0(\sqrt{2}L)\left(-\frac{\sqrt{2}}{2}\hat{\imath} - \frac{\sqrt{2}}{2}\hat{\jmath}\right) \times B_0(\hat{\jmath} + \hat{k}) = \text{same}$$

