Exam Total

PHYS 2135 Exam II

March 20, 2018

Name:

	/200		Recitation Section	:
answe	er. For questions 6-9	solutions must begin	Choose the best or most n with a correct OSE. Yors are NOT allowed.	•
		urther apart. Which q	y charged. It remains cor quantity remains unchang	
	2. The poter ng does not decreas [A] Electric field in the [B] Current through [C] Resistance of the [D] Power dissipated	e as well? e wire he wire e wire	s a length of wire is decre	eased. Which of the
(8) resista		oltmeter has	_ resistance. An ideal an	nmeter has
(8)	[A] for the current to [B] for the current to [C] for the current to	decrease to 37% of i	value.	
(8)	[A] those whose scie [B] S&T would push same charges.	•	rrent would be attracted who claimed to find the	to Rolla.
		significant increase i		/40

- **6.** In the capacitor circuit shown C_1 = C_2 = 8 μ F, C_3 = 6 μ F, C_4 = 10 μ F, and ΔV = 100 V.
- (20) (a) Find the equivalent capacitance of this circuit.

$$C_{12} = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1} = \left(\frac{1}{8\mu F} + \frac{1}{8\mu F}\right)^{-1} = \left(\frac{2}{8\mu F}\right)^{-1} = 4\mu F$$

$$C_{123} = C_{12} + C_3 = 4 \mu F + 6 \mu F = 10 \mu F$$

$$C_T = \left(\frac{1}{C_{123}} + \frac{1}{C_4}\right)^{-1} = \left(\frac{1}{10\mu\text{F}} + \frac{1}{10\mu\text{F}}\right)^{-1} = \left(\frac{2}{10\mu\text{F}}\right)^{-1} = 5\mu\text{F}$$

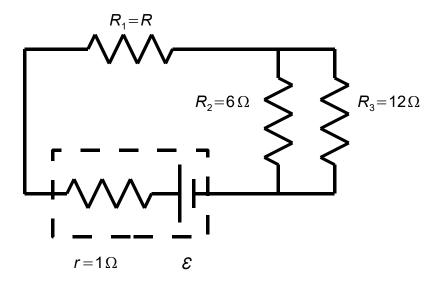
 $\Delta V = 100 \text{ V}$

$$C_{\tau}=5\mu F$$

(10) (b) Find the potential difference V_4 across capacitor C_4 .

$$Q_4\!=\!Q_T\!=\!C_T\Delta\,V\!=\!(5\,\mu\,F)(100\,V)\!=\!500\mu\,C$$

$$V_4 = \frac{Q_4}{C_4} = \frac{500 \mu \text{ C}}{10 \mu \text{ F}} = 50 \text{ V}$$


$$V_4 = 50 \, \text{V}$$

(10) (c) Find the total energy stored in this capacitor circuit.

$$U = \frac{1}{2}C_{\tau}(\Delta V)^{2} = \frac{1}{2}(5\mu F)(100 V)^{2} = 0.025 J$$

 $U = 0.025 \,\mathrm{J}$

7. In the circuit shown $R_1 = R$, $R_2 = 6\Omega$, $R_3 = 12\Omega$, $r = 1\Omega$.

(10) (a) If the current through R_3 is 1A, find the current I_2 through resistor R_2 .

$$I_2R_2 = V_2 = V_3 = I_3R_3$$

$$I_2 = I_3 \frac{R_3}{R_2}$$

$$I_2 = 2A$$

$$I_2 = (1 \text{ A}) \frac{12 \Omega}{6 \Omega}$$

(20) (b) If the power dissipated by resistor R_1 equals the total power dissipated by resistors R_2 , and R_3 , find the value of R.

$$I_1^2 R = P_1 = P_2 + P_3 = I_2^2 R_2 + I_3^2 R_3$$

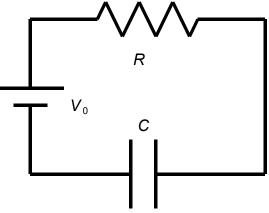
$$I_1 = I_2 + I_3 = 2 A + 1 A = 3 A$$

$$R = \frac{I_2^2 R_2 + I_3^2 R_3}{I_1^2}$$

$$R=4\Omega$$

$$R = \frac{(2A)^2 (6\Omega) + (1A)^2 (12\Omega)}{(3A)^2}$$

(10) (c) Find the emf, ϵ , of the battery.


$$R_{23} = \left(\frac{1}{R_2} + \frac{1}{R_3}\right)^{-1} = \left(\frac{1}{6\Omega} + \frac{1}{12\Omega}\right)^{-1} = 4\Omega$$

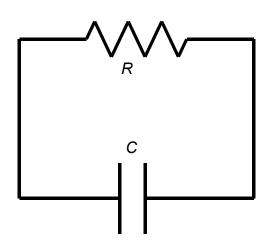
$$\mathcal{E} = I_{\tau} R_{\tau} = (3 \text{ A})($$

$$\mathcal{E} = 27 \text{ V}$$

$$R_T = r + R_1 + R_{23} = 1\Omega + 4\Omega + 4\Omega = 9\Omega$$

- **8.** An uncharged capacitor with capacitance C, a resistor with resistance R, and a battery with voltage V_0 are connected in series as shown in the diagram at right.
- (20) (a) Derive an equation for the current through the resistor as a function of time. Start from OSEs and express your answer in terms of V_0 , R, and C.

$$I = \frac{dQ}{dt}$$

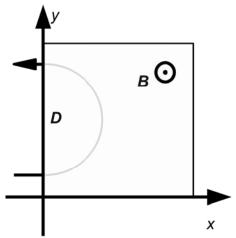

$$I = \frac{d}{dt}Q_f (1 - e^{-t/\tau})$$

$$I = \frac{Q_f}{\tau}e^{-t/\tau}$$

$$I = \frac{Q_f}{RC}e^{-t/RC}$$

$$I = \frac{V_0}{R} e^{-t/RC}$$

(20) (b) After a while, the battery is removed from the circuit and the charge on the capacitor is found to be Q_i . The capacitor and resistor are then reconnected as shown in the diagram at right. Derive an equation for the energy stored in the capacitor as a function of time. Start from OSEs and express your answer in terms of Q_i , R, and C.



$$U = \frac{1}{2} \left(\frac{Q^2}{C} \right)$$

$$U = \frac{1}{2} \left(\frac{\left[Q_i e^{-t/\tau} \right]^2}{C} \right)$$

$$U = \frac{1}{2} \left(\frac{Q_i^2}{C} \right) e^{-2t/RC}$$

9. A beam of particles having charge Q, mass m_0 , moving with speed v_0 , enter a region which has a uniform magnetic field of unknown magnitude pointing out of the page $(+\hat{k})$. These particles are observed to follow the circular path shown in the figure with diameter D.

(5)(a) What is the sign of the charge of the particles (Circle one.)

negative

positive

(b) Starting with OSE, derive a formula for the magnitude of the magnetic field B in terms of the given variables.

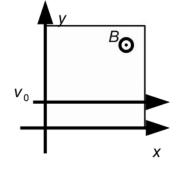
$$|q(\vec{E} + \vec{v} \times \vec{B})| = \frac{mv^2}{R}$$

$$|Q|v_0B = \frac{m_0v_0^2}{D/2}$$

$$B = \frac{2mv}{|Q|D}$$

(c) How much time does each particle spend in the region of magnetic field?

$$v = \frac{d}{t}$$


$$t = \frac{d}{v}$$

$$t = \frac{\pi D/2}{t}$$

$$t = \frac{\pi D}{2v_0}$$

(d) Suppose we now want to use an electric field to make (5)a velocity selector. What should be the direction of the electric field? (Circle one.)

(e) Derive a formula for the magnitude of the electric field E for the velocity selector in terms of m_0 , v_0 , Q and D.

$$0 = \vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$
$$E = vB$$

$$E = v_0 \left(\frac{2 m_0 v_0}{qD} \right) \qquad E = \frac{2 m_0 v_0^2}{|Q| D}$$

$$E = \frac{2 m_0 v_0^2}{|Q| D}$$