Exam Total

PHYS 2135 Exam II

March 20, 2018

Name: \qquad

Recitation Section:

Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. For questions 6-9, solutions must begin with a correct OSE. You must show work to receive full credit for your answers. Calculators are NOT allowed.
(8) \qquad 1. A parallel plate capacitor is fully charged. It remains connected to the battery, and the plates are moved further apart. Which quantity remains unchanged?
[A] capacitance
[B] electric field
[C] charge
[D] potential difference
(8) \qquad 2. The potential difference across a length of wire is decreased. Which of the following does not decrease as well?
[A] Electric field in the wire
[B] Current through the wire
[C] Resistance of the wire
[D] Power dissipated in the wire
(8) \qquad 3. An ideal voltmeter has \qquad resistance. An ideal ammeter has \qquad resistance.
[A] infinite, infinite
[B] infinite, zero
[C] zero, infinite
[D] zero, zero
(8) \qquad 4. The time constant of an RC circuit is the time it takes
[A] for the current to decrease to 37% of its initial value.
[B] for the current to drop to zero.
[C] for the current to reach its maximum value.
[D] for the capacitor to be completely charged.
(8) \qquad 5. If magnetic charges were discovered at S\&T,
[A] those whose science knowledge is current would be attracted to Rolla.
[B] S\&T would push back against others who claimed to find the same charges.
[C] it would be an outstanding discovery in the field.
[D] there would be a significant increase in our potential.
6. In the capacitor circuit shown $C_{1}=C_{2}=8 \mu \mathrm{~F}, C_{3}=6 \mu \mathrm{~F}, C_{4}=10 \mu \mathrm{~F}$, and $\Delta V=100 \mathrm{~V}$.
(20) (a) Find the equivalent capacitance of this circuit.

$$
\Delta V=100 \mathrm{~V}
$$

(10) (b) Find the potential difference V_{4} across capacitor C_{4}.
(10) (c) Find the total energy stored in this capacitor circuit.
7. In the circuit shown $R_{1}=R, R_{2}=6 \Omega, R_{3}=12 \Omega, r=1 \Omega$.

(10) (a) If the current through R_{3} is 1 A , find the current I_{2} through resistor R_{2}.
(20) (b) If the power dissipated by resistor R_{1} equals the total power dissipated by resistors R_{2}, and R_{3}, find the value of R.
(10) (c) Find the emf, ε, of the battery.
8. An uncharged capacitor with capacitance C, a resistor with resistance R, and a battery with voltage V_{0} are connected in series as shown in the diagram at right.
(20) (a) Derive an equation for the current through the resistor as a function of time. Start from OSEs and express your answer in terms of V_{0}, R, and C.

(20) (b) After a while, the battery is removed from the circuit and the charge on the capacitor is found to be Q_{i}. The capacitor and resistor are then reconnected as shown in the diagram at right. Derive an equation for the energy stored in the capacitor as a function of time. Start from OSEs and express your answer in terms of Q_{i}, R, and C.

9. A beam of particles having charge Q, mass m_{0}, moving with speed v_{0}, enter a region which has a uniform magnetic field of unknown magnitude pointing out of the page ($+\hat{k}$). These particles are observed to follow the circular path shown in the figure with diameter D.
(5) (a) What is the sign of the charge of the particles (Circle one.)
negative positive

(10) (b) Starting with OSE, derive a formula for the magnitude of the magnetic field B in terms of the given variables.
(10) (c) How much time does each particle spend in the region of magnetic field?
(5) (d) Suppose we now want to use an electric field to make a velocity selector. What should be the direction of the electric field? (Circle one.)
$+\hat{i}$
$+\hat{j}$
$+\hat{k}$
$-\hat{i}$
$-\hat{j}$

- \hat{k}

(10) (e) Derive a formula for the magnitude of the electric field E for the velocity selector in terms of m_{0}, v_{0}, Q and D.

