Official Starting Equations PHYS 2135, Engineering Physics II

From PHYS 1135:

$$x = x_0 + v_{0x}\Delta t + \frac{1}{2}a_x(\Delta t)^2$$
 $v_x = v_{0x} + a_x\Delta t$ $v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$ $\sum \vec{F} = m\vec{a}$

$$v_x = v_{0x} + a_x \Delta t$$

$$v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$$

$$\sum \vec{F} = m\vec{a}$$

$$F_r = -\frac{mv_t^2}{r}$$

$$P = \frac{F}{A}$$

$$\vec{p} = m\vec{v}$$

$$P = \frac{dW}{dt}$$

$$F_r = -\frac{mv_t^2}{r}$$
 $P = \frac{F}{A}$ $\vec{p} = m\vec{v}$ $P = \frac{dW}{dt}$ $W = \int \vec{F} \cdot d\vec{s}$

$$K = \frac{1}{2}mv^2$$

$$K = \frac{1}{2}mv^2$$
 $U_f - U_i = -W_{\text{conservative}}$ $E = K + U$ $E_f - E_i = (W_{\text{other}})_{i \to f}$ $E = P_{\text{ave}}t$

$$E = K + U$$

$$E_f - E_i = (W_{\text{other}})_{i \to f}$$

$$E = P_{\text{ave}}t$$

Constants:

$$g = 9.8 \frac{m}{c^2}$$

$$m_{\text{electron}} = 9.11 \times 10^{-31} \text{kg}$$

$$g = 9.8 \frac{\text{m}}{\text{s}^2}$$
 $m_{\text{electron}} = 9.11 \times 10^{-31} \text{kg}$ $m_{\text{proton}} = 1.67 \times 10^{-27} \text{kg}$ $e = 1.6 \times 10^{-19} \text{C}$

$$e = 1.6 \times 10^{-19}$$

$$c = 3.0 \times 10^8 \, \frac{\mathrm{m}}{\mathrm{s}}$$

$$c = 3.0 \times 10^8 \frac{\text{m}}{\text{s}} \qquad k = \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \frac{\text{Nm}^2}{\text{C}^2} \qquad \epsilon_0 = 8.85 \times 10^{-12} \frac{\text{C}^2}{\text{Nm}^2} \qquad \mu_0 = 4\pi \times 10^{-7} \frac{\text{Tm}}{\text{A}}$$

$$\epsilon_0 = 8.85 \times 10^{-12} \frac{\text{C}^2}{\text{Nm}^2}$$

$$\mu_0 = 4\pi \times 10^{-7} \frac{\text{Tm}}{\text{A}}$$

Electric Force, Field, Potential and Potential Energy:

$$\vec{F} = k \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}$$

$$\vec{E} = k \frac{q}{r^2} \hat{r}$$

$$\vec{F} = q\vec{E}$$

$$\vec{E} = k \frac{q}{r^2} \hat{r}$$
 $\vec{F} = q \vec{E}$ $\Delta V = -\int_i^f \vec{E} \cdot d\vec{s}$

$$U = k \frac{q_1 q_2}{r_{12}}$$

$$V = k \frac{q}{r}$$

$$\Delta U = q \Delta V$$

$$V=krac{q}{r}$$
 $\Delta U=q\Delta V$ $E_x=-rac{\partial V}{\partial x}$

$$ec{p} = q ec{d}$$
 (from $-$ to +) $ec{ au} = ec{p} imes ec{E}$ $U_{
m dipole} = -ec{p} \cdot ec{E}$

$$\vec{\tau} = \vec{p} \times \vec{E}$$

$$U_{\rm dipole} = -\vec{p} \cdot \bar{E}$$

$$\Phi_E = \int_{S} \vec{E} \cdot d\vec{A}$$

$$\Phi_E = \int_{\mathcal{S}} \; \vec{E} \cdot d\vec{A} \qquad \qquad \oint_{\mathcal{S}} \; \vec{E} \cdot d\vec{A} = \frac{q_{\rm enclosed}}{\epsilon_0} \qquad \qquad \lambda \equiv \frac{\rm charge}{\rm length} \qquad \qquad \sigma \equiv \frac{\rm charge}{\rm area} \qquad \qquad \rho \equiv \frac{\rm charge}{\rm volume}$$

$$\lambda \equiv \frac{\text{charge}}{\text{length}}$$

$$\sigma \equiv \frac{\text{charge}}{\text{area}}$$

$$\rho \equiv \frac{\text{charge}}{\text{volume}}$$

Circuits:

$$C = \frac{Q}{V}$$

$$C = \frac{Q}{V} \qquad \frac{1}{CT} = \sum \frac{1}{Ct}$$

$$C_T = \sum C_i$$

$$C_T = \sum C_i$$
 $C_0 = \frac{\epsilon_0 A}{d}$ $C = \kappa C_0$

$$C = \kappa C_0$$

$$U = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}QV$$

$$I = \frac{dq}{dt}$$

$$J = \frac{I}{A}$$

$$I = rac{dq}{dt}$$
 $J = rac{I}{A}$ $ec{J} = nqec{v}_d$

$$\vec{J} = \sigma \vec{E}$$

$$V = IR$$

$$R = \rho \frac{L}{A}$$

$$\sigma = \frac{1}{\rho}$$

$$\vec{J} = \sigma \vec{E}$$
 $V = IR$ $R = \rho \frac{L}{A}$ $\sigma = \frac{1}{\rho}$ $\rho = \rho_0 [1 + \alpha (T - T_0)]$

$$\sum I = 0$$

$$\sum I = 0$$
 $\sum \Delta V = 0$

$$\frac{1}{R_T} = \sum \frac{1}{R_i}$$

$$R_T = \sum R_i$$

$$\frac{1}{R_T} = \sum \frac{1}{R_i} \qquad \qquad R_T = \sum R_i \qquad \qquad P = IV = \frac{V^2}{R} = I^2 R$$

$$Q(t) = Q_{\text{final}} \left[1 - e^{-t/\tau} \right]$$

$$Q(t) = Q_0 e^{-t/\tau} \qquad \qquad \tau = RC$$

$$\tau = RC$$

Integral:

$$\int \frac{du}{(u^2 + a^2)^{3/2}} = \frac{u}{a^2 \sqrt{u^2 + a^2}} + c$$

Magnetic Force, Field and Inductance:

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

$$\vec{F} = I\vec{L} \times \vec{B}$$

$$\Phi_B = \int \vec{B} \cdot d\vec{A} \qquad \qquad \oint \vec{B} \cdot d\vec{A} = 0$$

$$\oint \vec{B} \cdot d\vec{A} = 0$$

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{\text{enclosed}}$$

$$\vec{\mu} = NI\vec{A}$$

$$ec{ au}=ec{\mu} imesec{B}$$

$$U_{\rm dipole} = -\vec{\mu} \cdot \vec{B}$$

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$$

$$d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{s} \times \vec{n}}{r^2}$$

$$\mathcal{E} = -N \frac{d\Phi_{I}}{dt}$$

$$d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{s} \times \hat{r}}{r^2} \qquad \qquad \mathcal{E} = -N \frac{d\Phi_B}{dt} \qquad \qquad \oint \vec{E} \cdot d\vec{s} = -\frac{d\phi_B}{dt}$$

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{\text{enclosed}} + \mu_0 \epsilon_0 \frac{d\phi_E}{dt}$$

$$B = \frac{\mu_0 I}{2\pi r} \qquad \qquad B = \mu_0 n I$$

$$B = \mu_0 n I$$

Electromagnetic Waves:

$$I = \frac{P}{A}$$

$$u = \frac{1}{2} \left(\epsilon_0 E^2 + \frac{B^2}{\mu_0} \right) = \epsilon_0 E^2 = \frac{B^2}{\mu_0}$$

$$u = \frac{1}{2} \left(\epsilon_0 E^2 + \frac{B^2}{\mu_0} \right) = \epsilon_0 E^2 = \frac{B^2}{\mu_0} \qquad \langle u \rangle = \frac{1}{4} \left(\epsilon_0 E_{\text{max}}^2 + \frac{B_{\text{max}}^2}{\mu_0} \right) = \frac{1}{2} \epsilon_0 E_{\text{max}}^2 = \frac{B_{\text{max}}^2}{2\mu_0}$$

$$\frac{E}{B} = c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} \qquad \qquad \vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \qquad \qquad I = \langle S \rangle = c \langle u \rangle$$

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{E}$$

$$I = \langle S \rangle = c \langle u \rangle$$

$$\langle P_{\rm rad} \rangle = \frac{I}{c} \text{ or } \frac{2I}{c}$$

$$k = \frac{2\pi}{\lambda}$$

$$\omega = 2\pi f \qquad \qquad T = \frac{1}{f}$$

$$T = \frac{1}{f}$$

$$v = f\lambda = \frac{\omega}{k} = \frac{c}{n}$$

Optics:

$$I = I_{\text{max}} \cos^2 \phi$$
 $\theta_r = \theta_i$ $n = \frac{c}{n} = \frac{\lambda_0}{\lambda_0}$

$$\theta_r = \theta_i$$

$$n = \frac{c}{v} = \frac{\lambda_0}{\lambda_n}$$

$$n_r \sin \theta_r = n_i \sin \theta_i$$

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$

$$m = \frac{y'}{y} = -\frac{s'}{s}$$

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$
 $m = \frac{y'}{y} = -\frac{s'}{s}$ $\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ $f = \frac{R}{2}$

$$f = \frac{R}{2}$$

$$\frac{n_a}{s} + \frac{n_b}{s'} = \frac{n_b - n_c}{R}$$

$$\frac{n_a}{s} + \frac{n_b}{s'} = \frac{n_b - n_a}{R} \qquad m = \frac{y'}{y} = -\frac{n_a s'}{n_b s} \qquad \Delta L = m\lambda$$

$$\Delta L = m\lambda$$

$$\Delta L = \left(m + \frac{1}{2}\right)\lambda$$

$$\Delta L = d \sin \theta$$

$$\Delta L = d \sin \theta$$
 $\phi = 2\pi \left(\frac{\Delta L}{\lambda}\right)$ $I = I_0 \cos^2 \frac{\phi}{\lambda}$

$$I = I_0 \cos^2 \frac{\phi}{2}$$

$$R = \frac{\lambda}{\Lambda \lambda} = Nm$$

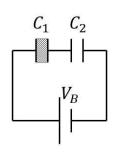
$$m\lambda = a\sin\theta$$

$$\beta = \frac{2\pi}{\lambda} a \sin \theta$$

Integral:

$$\int \frac{du}{(u^2 + a^2)^{3/2}} = \frac{u}{a^2 \sqrt{u^2 + a^2}} + c$$

Exam Total


PHYS 2135 Exam II October 25, 2022

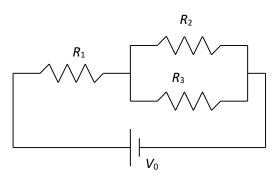
_	Name:	Section:	
0			

/20

with an credit.	uestions 1-5, select the best answer. For problems 6-11, solund Official Starting Equation, when appropriate. Work must be allowed. Use appropriate units. Provide variable and fundamental constants.	e shown to receive	
(8)	1. A constant electric field is maintained inside a piece increasing its temperature. What happens to the current density i [A] increases [B] decreases [C] remains unchanged [D] not enough information		
(8)	2. A Duracell 9V battery is connected to an external 100 kilo-ohm resistor. If the external resistor is now changed to a 10 ohm resistor, how will the battery's terminal voltage change? [A] increase [B] decrease [C] remains unchanged [D] not enough information		
(8)	 3. A simple circuit consists of a 12 V power supply and two one kilo-ohm resistors in series. To measure the voltage across one of the resistors, a student hooks up his voltmeter in series. What will happen? [A] A large current will flow; smoke, fire, tears, and a broken meter [B] Very little current will flow. The meter will display approximately 12 V. [C] The meter will correctly measure 6 V. [D] The meter's readings will jump all over the place 		
(8)			
(8)	5. (Free) If a 300 V power supply is hooked up to an elect for 10 V, what will happen? [A] It contacts HR and presses charges	trolytic capacitor rated	
	 [B] It explodes and reincarnates as a supercapacitor [C] Its magic smoke is captured, distilled, and vaped by EE students [D] It's unfortunate, but life isn't farad all 	/40	

(15) a. Determine C_T the total capacitance of the pair of capacitors after the dielectric has been added.

$$C_T =$$

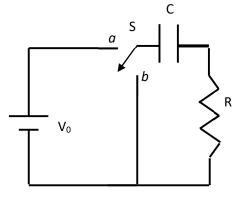

(10) b. Determine Q_1 the charge on C_1 long after the dielectric has been added.

$$Q_1 =$$

(15) c. Determine U_1 the energy stored on C_1 long after the dielectric has been added.

$$U_1 =$$

- 7. For the resistor system shown, $R_1 = R_0$, $R_2 = 3R_0$, and $R_3 = 6R_0$. Find ...
- (15) a. R_{T} the equivalent resistance, and


(15) b. the current through each resistor.

$$I_2 =$$

(10) c. Assume that $R_0 = 100 \Omega$. If the maximum power that can safely be delivered to R_2 is 3 W, what is the maximum voltage that can be applied to the circuit?

 $V_{0-max} =$

8. In the circuit shown there is an uncharged capacitor C, a resistor R, and a switch S. They are in series with a battery of voltage V_0 .

(10) a. The switch S is set to 'a' to charge the capacitor. After a long time, what will be the charge on the capacitor?

$Q_f =$		

(10) b. What is the final energy stored in the capacitor?

$$U_f =$$

(10) c. How long does it take for the stored energy in the capacitor to be reduced to one-quarter (1/4) of its original value?

t =

9.	A proton moves perpendicularly to a uniform magnetic field $\bf{\it B}$ at a speed $v=1.67 \times 10^7$ m/s and experiences an acceleration $a=3.2 \times 10^{13}$ m/s ² in the positive x -direction when its velocity is in the positive z -direction.			
(8)	a.	What is the magnitude of the magnetic field <i>B</i> ?		
			B =	
(8)	b.	What is the direction of the magnetic field?		
10.	and p	g, straight wire carries a current <i>I</i> = 15 A directed alc erpendicular to a magnetic field. The wire experience ngth of 0.30 N/m in the negative <i>y</i> -direction.		
(8)	a.	What is the magnitude of the magnetic field?		
			B =	
		•		
(8)	b.	What is the direction of the magnetic field?		
11.	A current $I = 10.0$ mA is maintained in a single circular loop with a radius $r = 20.0$ cm. A magnetic field of magnitude $B = 0.50$ T is directed in the plane of the loop.			
(8)	What is the magnitude of the torque exerted by the magnetic field on the loop?			
	[Express your numerical result in terms of π or use π = 3.14]		au =	
			/40	