Official Starting Equations

PHYS 2135, Engineering Physics II

From PHYS 1135:
$x=x_{0}+v_{0 x} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} \quad v_{x}=v_{0 x}+a_{x} \Delta t \quad v_{x}^{2}=v_{0 x}^{2}+2 a_{x}\left(x-x_{0}\right) \quad \sum \vec{F}=m \vec{a}$
$F_{r}=-\frac{m v_{t}^{2}}{r} \quad P=\frac{F}{A} \quad \vec{p}=m \vec{v} \quad P=\frac{d W}{d t} \quad W=\int \vec{F} \cdot d \vec{s}$
$K=\frac{1}{2} m v^{2} \quad U_{f}-U_{i}=-W_{\text {conservative }} \quad E=K+U \quad E_{f}-E_{i}=\left(W_{\text {other }}\right)_{i \rightarrow f} \quad E=P_{\text {ave }} t$

Constants:

$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad m_{\text {electron }}=9.11 \times 10^{-31} \mathrm{~kg}$
$m_{\text {proton }}=1.67 \times 10^{-27} \mathrm{~kg}$
$e=1.6 \times 10^{-19} \mathrm{C}$
$c=3.0 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \quad k=\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \quad \epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}} \quad \mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{\mathrm{A}}$

Electric Force, Field, Potential and Potential Energy:

$\vec{F}=k \frac{q_{1} q_{2}}{r_{12}^{2}} \hat{r}_{12}$
$\vec{E}=k \frac{q}{r^{2}} \hat{r}$
$\vec{F}=q \vec{E}$
$\Delta V=-\int_{i}^{f} \vec{E} \cdot d \vec{s}$
$U=k \frac{q_{1} q_{2}}{r_{12}}$
$V=k \frac{q}{r}$
$\Delta U=q \Delta V$
$E_{x}=-\frac{\partial V}{\partial x}$
$\vec{p}=q \vec{d}($ from - to +$)$
$\vec{\tau}=\vec{p} \times \vec{E}$
$U_{\text {dipole }}=-\vec{p} \cdot \vec{E}$
$\Phi_{E}=\int_{S} \vec{E} \cdot d \vec{A}$
$\oint_{S} \vec{E} \cdot d \vec{A}=\frac{q_{\text {enclosed }}}{\epsilon_{0}}$
$\lambda \equiv \frac{\text { charge }}{\text { length }}$
$\sigma \equiv \frac{\text { charge }}{\text { area }} \quad \rho \equiv \frac{\text { charge }}{\text { volume }}$

Circuits:

$$
\begin{array}{llll}
C=\frac{Q}{V} & \frac{1}{C_{T}}=\sum \frac{1}{c_{i}} & C_{T}=\sum C_{i} & C_{0}=\frac{\epsilon_{0} A}{d} \\
U=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} Q V & I=\frac{d q}{d t} & J=\frac{I}{A} & \vec{J}=n q \vec{v}_{d} \\
\vec{J}=\sigma \vec{E} & V=I R & R=\rho \frac{L}{A} & \sigma=\frac{1}{\rho} \\
\sum I=0 & \sum \Delta V=0 & \frac{1}{R_{T}}=\sum \frac{1}{R_{i}} & R_{T}=\sum R_{i} \\
Q(t)=Q_{\text {final }}\left[1-e^{-t / \tau}\right] & Q(t)=Q_{0} e^{-t / \tau} & \tau=R C &
\end{array}
$$

Magnetic Force, Field and Inductance:

$\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})$
$\vec{F}=I \vec{L} \times \vec{B}$
$\Phi_{B}=\int \vec{B} \cdot d \vec{A}$
$\oint \vec{B} \cdot d \vec{A}=0$
$\oint \vec{B} \cdot d \vec{s}=\mu_{0} I_{\text {enclosed }}$
$\vec{\mu}=N I \vec{A}$
$\vec{\tau}=\vec{\mu} \times \vec{B}$
$U_{\text {dipole }}=-\vec{\mu} \cdot \vec{B}$
$\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{q \vec{v} \times \hat{r}}{r^{2}}$
$d \vec{B}=\frac{\mu_{0} I}{4 \pi} \frac{d \vec{s} \times \hat{r}}{r^{2}}$
$\mathcal{E}=-N \frac{d \Phi_{B}}{d t}$
$\oint \vec{E} \cdot d \vec{s}=-\frac{d \phi_{B}}{d t}$
$\oint \vec{B} \cdot d \vec{s}=\mu_{0} I_{\text {enclosed }}+\mu_{0} \epsilon_{0} \frac{d \phi_{E}}{d t}$
$B=\frac{\mu_{0} I}{2 \pi r}$
$B=\mu_{0} n I$

Electromagnetic Waves:

$I=\frac{P}{A}$
$u=\frac{1}{2}\left(\epsilon_{0} E^{2}+\frac{B^{2}}{\mu_{0}}\right)=\epsilon_{0} E^{2}=\frac{B^{2}}{\mu_{0}}$
$\langle u\rangle=\frac{1}{4}\left(\epsilon_{0} E_{\text {max }}^{2}+\frac{B_{\text {max }}^{2}}{\mu_{0}}\right)=\frac{1}{2} \epsilon_{0} E_{\text {max }}^{2}=\frac{B_{\text {max }}^{2}}{2 \mu_{0}}$
$\frac{E}{B}=c=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}$
$\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}$
$I=\langle S\rangle=c\langle u\rangle$
$\left\langle P_{\text {rad }}\right\rangle=\frac{I}{c}$ or $\frac{2 I}{c}$
$k=\frac{2 \pi}{\lambda}$
$\omega=2 \pi f$
$T=\frac{1}{f}$
$v=f \lambda=\frac{\omega}{k}=\frac{c}{n}$

Optics:

$I=I_{\text {max }} \cos ^{2} \phi$
$\theta_{r}=\theta_{i}$
$n=\frac{c}{v}=\frac{\lambda_{0}}{\lambda_{n}}$
$n_{r} \sin \theta_{r}=n_{i} \sin \theta_{i}$
$\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}$
$m=\frac{y^{\prime}}{y}=-\frac{s^{\prime}}{s}$
$\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$f=\frac{R}{2}$
$\frac{n_{a}}{s}+\frac{n_{b}}{s^{\prime}}=\frac{n_{b}-n_{a}}{R}$
$m=\frac{y^{\prime}}{y}=-\frac{n_{a} s^{\prime}}{n_{b} s}$
$\Delta L=m \lambda$
$\Delta L=\left(m+\frac{1}{2}\right) \lambda$
$\Delta L=d \sin \theta$
$\phi=2 \pi\left(\frac{\Delta L}{\lambda}\right)$
$I=I_{0} \cos ^{2} \frac{\phi}{2}$
$R=\frac{\lambda}{\Delta \lambda}=N m$
$m \lambda=a \sin \theta$
$\beta=\frac{2 \pi}{\lambda} a \sin \theta$
$I=I_{0}\left[\frac{\sin (\beta / 2)}{\beta / 2}\right]^{2}$

Integral:
$\int \frac{d u}{\left(u^{2}+a^{2}\right)^{3 / 2}}=\frac{u}{a^{2} \sqrt{u^{2}+a^{2}}}+c$

Exam Total

PHYS 2135 Exam II
October 26, 2021
Name: \qquad Section: \qquad

For questions $1-5$, select the best answer. For problems 6-11, solutions must begin with an Official Starting Equation, when appropriate. Work must be shown to receive credit. Calculators are not allowed.
(8)__ B_1. A 30 W light bulb and a 60 W light bulb are connected in series. Both power ratings are at 120 V . If the potential across the two bulbs in series is 120 V , which statement is true?
[A] The 30 W bulb glows brighter and carries a smaller current than the 60 W bulb.
[B] The 30 W bulb glows brighter and carries the same current as the 60 W bulb.
[C] The 60 W bulb glows brighter and carries a larger current than the 30 W bulb.
[D] The 60 W bulb glows brighter and carries the same current as the 30 W bulb.
(8) D 2. An ammeter is constructed by using a galvanometer with an internal resistance, R_{G}. A shunt resistor, $R_{s h}$, is used to make it into an ammeter. The shunt resistor is chosen so that the maximum deflection of the galvanometer will correspond to a maximum current l. When the ammeter reading corresponds to the maximum current I, the potential difference across the 'ammeter' will be:
[A] $I R_{s h}$
[B] $I R_{G}$
[C] $I\left(R_{s h}+R_{G}\right) /\left(R_{s h} R_{G}\right)$
[D] $I\left(R_{s h} R_{G}\right) /\left(R_{s h}+R_{G}\right)$
(8) $\quad \mathbf{A}$ electron of mass m_{e} is moving with a constant velocity $2 \vec{v}$. They both enter a region of constant magnetic field \vec{B}, which is perpendicular to \vec{v}. Thus, both particles will move in circular paths. Let R_{e} be the radius of the electron path and R_{p} be the radius of the proton path. Then the ratio R_{e} / R_{p} will be:
[A] $2 m_{e} / m_{p}$
[B] $2 m_{p} / m_{e}$
[C] $m_{e} /\left(2 m_{p}\right)$
[D] $m_{p} /\left(2 m_{e}\right)$
(8)__ C 4. The resistance of a cylindrical copper conductor that carries a current along its length may be reduced by
[A] decreasing the potential difference across the conductor.
[B] decreasing the radius of the conductor.
[C] decreasing the length of the conductor.
[D] decreasing the current in the conductor.
(8) \qquad 5. (Free) William Shatner
[A] was Captain James T Kirk of the Enterprise.
[B] is 90 years old.
[C] is the oldest man to have been in space.
[D] spent 10 min. total aloft in the Blue Origin New Shepard Rocket.
6. A light bulb connected across 120 V is heating up. The thermal coefficient of resistivity of the filament is positive.
(10) The rate at which energy is dissipated in the bulb as the bulb heats is ... [Select the correct completion of the sentence.]
[A] decreasing.
[B] remaining constant.
[C] increasing.
Answer: A
7. A parallel plate capacitor initially has an insulating material completely filling the gap yielding a capacitance C_{i}. The capacitor is fully charged using a battery with potential difference V_{B}. After the capacitor is fully charged, the battery is disconnected and then the insulating material is removed from the gap yielding a new capacitance $\frac{2}{3} C_{i}$. [Express answers in terms of given quantities $\left(V_{B}\right.$ and $\left.C_{i}\right)$.]
(10) Determine the work done in removing the insulator from the capacitor gap.
$W=U_{f}-U_{i}$
$Q_{f}=Q_{i}=C_{i} V_{B}$
$W=\frac{1}{4} C_{i} V_{B}^{2}$
$W=\frac{1}{2} \frac{Q_{f}^{2}}{C_{f}}-\frac{1}{2} \frac{Q_{i}^{2}}{C_{i}}$
$W=\frac{1}{2} \frac{C_{i}^{2} V_{B}^{2}}{\frac{2}{3} C_{i}}-\frac{1}{2} \frac{C_{i}^{2} V_{B}^{2}}{C_{i}}=\frac{3}{4} C_{i} V_{B}^{2}-\frac{1}{4} C_{i} V_{B}^{2}$
(10) If $V_{B}=24 \mathrm{~V}$ determine the final potential difference across the plates of the capacitor.
$V_{f}=\frac{Q_{f}}{C_{f}}=\frac{Q_{i}}{\frac{2}{3} C_{i}}=\frac{3}{2} V_{B}=\frac{3}{2}(24 \mathrm{~V})$

$$
V_{f}=36 \mathrm{~V}
$$

8. A loop of current initially in the $x y$-plane, as illustrated is in a region with a uniform magnetic field in the y-direction.
(10) Around which axis would the loop of current begin to spin? [Select the correct answer.]
[A] x-axis
[B] y-axis
[C] z-axis
[D] There is no torque.
Note that $\vec{\mu}$ is in either $+\hat{k}$ or $-\hat{k}$.

9. In the circuit illustrated, the voltage across the 2.0Ω resistor is 12.0 V .
(10) (a) What is the total equivalent resistance for this circuit?
$R_{12}=R_{1}+R_{2}=1 \Omega+2 \Omega=3 \Omega$

$R_{T}=\left(\frac{1}{R_{12}}+\frac{1}{R_{3}}\right)^{-1}=\left(\frac{1}{3 \Omega}+\frac{1}{6 \Omega}\right)^{-1}=\left(\frac{3}{6 \Omega}\right)^{-1}$

$$
R_{T}=2 \Omega
$$

(10) (b) What is the current through the 6.0Ω resistor?
$I_{12}=I_{2}=\frac{V_{2}}{R_{2}}=\frac{12 \mathrm{~V}}{2 \Omega}=6 \mathrm{~A}$
$V_{3}=V_{12}=I_{12} R_{12}=(6 \mathrm{~A})(3 \Omega)=18 \mathrm{~V}$
$I_{3}=\frac{V_{3}}{R_{3}}=\frac{18 \mathrm{~V}}{6 \Omega}$
(10) (c) What is the emf ε of the battery?
$\varepsilon=V_{3}$

$$
\varepsilon=18 \mathrm{~V}
$$

(10) (d) How much power is dissipated in the 1.0Ω resistor?

$$
P_{1}=I_{1}^{2} R_{1}=I_{12}^{2} R_{1}=(6 \mathrm{~A})^{2}(1 \Omega)
$$

$$
P_{1}=36 \mathrm{~W}
$$

10. The circuit shown has a switch with two positions. The capacitor is initially uncharged. [Express answers in terms of given quantities (V, R, C and t_{1}).]
(20) (a) How long after the switch is set to position A will the charge on the capacitor be $1 / 3$ of its maximum charge?
$\frac{1}{3} Q_{f}=Q=Q_{f}\left(1-e^{-t / R C}\right)$
$\frac{1}{3}=1-e^{-t / R C}$
$e^{-t / R C}=\frac{2}{3}$
$-\frac{t}{R C}=\ln \left(\frac{2}{3}\right)$

$$
t=-R C \ln \left(\frac{2}{3}\right)
$$

(20) (b) After the switch has been at position A for a long time, it is moved to position B. After a time t_{1} with the switch in position B, what is the current in the resistor R ?

$$
\begin{aligned}
& I=-\frac{d Q}{d t} \\
& I=-\frac{d}{d t}\left(Q_{0} e^{-t / R C}\right) \\
& I=\frac{Q_{0}}{R C} e^{-t / R C} \\
& I=\frac{C V}{R C} e^{-t / R C}
\end{aligned}
$$

11. A proton (mass MP and charge e) is traveling in the positive x-direction (parallel to the surface of the earth) at constant speed V under the influence of the earth's gravitational force. There is a constant magnetic field of magnitude B in this region that is perpendicular to both the gravitational force and the proton's velocity.
(15) (a) If the proton continues to move straight along the x-direction what is the direction of the magnetic field? You must justify your answer to receive full credit.

Gravitational force is in the - $\hat{\jmath}$ direction. Thus, magnetic force must be in the $+\hat{\jmath}$ direction. This occurs if \vec{B} is into the
 page.
\qquad
Direction of \vec{B} is $-\hat{k}$
(25) (b) What speed must the proton have to continue to move in a straight path along the positive x-direction?
$0=\vec{F}_{T}=-M_{P} g \hat{\jmath}+e V \hat{\imath} \times B(-\hat{k})$
$M_{P} g \hat{\jmath}=e V B \hat{\jmath}$

$$
V=\frac{M_{P} g}{e B}
$$

