Physics 2135 Exam 2

Oct. 17, 2017

/200	Exam Total
	/200

Rec. Sect:

Five multiple choice questions, 8 points each. Choose the **best or most nearly correct** answer. For questions 6-9, solutions must begin with a correct OSE. You must show work to receive full credit for your answers. Calculators are NOT allowed.

- (8) 1. A parallel plate capacitor has capacitance C_0 . The distance between the plates is halved and a dielectric slab with dielectric constant K = 2 is inserted so that it completely fills the space between the plates. The new value of the capacitance is:
 - A. 2*C*₀

B. $C_0/2$

C. C_0

- D. 4Co
- 2. A cylindrical copper conductor is to transport current parallel to the axis of the cylinder. Which cylinder will have the lowest resistance?
 - A. Short, small diameter, and hot
- B. Long, large diameter, and cold
- C. Short, large diameter, and cold
- D. Long, small diameter, and hot
- 3. A negatively charged particle enters a region of (8) constant magnetic field as shown. The initial defection of the particle is
- B. down
- C. into the page D. out of the page

4. The diagram shows a side view of three current loops in \overline{a} uniform magnetic field. All three loopsare identical and each carries the same current. For which loop is the potentialenergy zero?

- A. **1**
- в 2
- C. **3**
- D. None of these

- (8) 5. In 1908, a giant explosion occurred at Tanguska (Siberia) that was estimated at between 10-15 megatons and felled approximately 6 million trees in an area over 2000 square kilometers. Some believe Nikola Tesla's "Death Ray" was responsible for the explosion. Most likely
 - A. they are correct-never anger a physicist
 - B. they are nutcases, it was obviously the result of a meteor or comet
 - C. nope, nope, just UFOs having some fun
 - D. it was really a miniature black hole that passed through the earth

- 6. Wire A has length L and wire B has length 2L. Both wires have circular cross-sections. At room temperature (20° C) both wires have the same resistance. Wire A is made from material that has a resistivity that is one-half that of the material used to make wire B.
- (20) a) Find the ratio of the radii of the two wires r_B/r_A .

(20) b) Both wires are now heated to 520° C. What is the ratio of the resistances of the two wires R_B/R_A at this elevated temperature? The temperature coefficient of the material for wire A is 2 (° C)⁻¹, and for the material in wire B it is 5 (° C)⁻¹. You may assume that the wires do not expand upon heating.

7. For the resistor circuit shown $R_1 = 6.0 \Omega$, $R_2 = 1.0 \Omega$, $R_3 = 2.0 \Omega$, and $R_4 = 3.0 \Omega$.

(20) a) Find the equivalent resistance.

(20) b) The power supply provides a potential difference $V_0 = 18 \text{ V}$. Determine the power dissipated by resistor R_4 .

- 8. For the circuit shown $C = 6 \mu F$ and $\Delta V = 25 \text{ V}$. Initially the capacitor is uncharged. The switch S is then closed and the capacitor begins to charge.
- (10) a) Determine the charge on the capacitor a very long time $(t \to \infty)$ after the switch is closed.

(30) b) After the switch has been closed for time *T* the voltage across the capacitor is found to be 1/5 of its final value. Find *R*? You should express your answer in terms of system parameters (do not attempt a numerical solution).

9. Particle 1 having known initial velocity $\vec{v}_1 = v_0 \hat{j}$, positive charge $Q_1 = +Q$, and mass $M_1 = M$ passes through the origin O and enters a region of uniform magnetic field of unknown magnitude which is known to be either parallel (out of page) or antiparallel (into the page) to the z-axis. It strikes the x-axis at $x_1 = D$. A second particle of unknown mass having a charge of unknown sign but known magnitude Q passes through the origin with the same initial velocity and strikes the x-axis at $x_2 = -2D$.

- (5) a) What is the direction of \vec{B} (+ \hat{k} or - \hat{k})?
- (5) b) What is the sign of Q_2 (+ or -)?
- (15) c) Find the magnitude *B* of the magnetic field.

(15) d) Find the mass, M_2 , of particle 2.