Official Starting Equations

PHYS 2135, Engineering Physics II

From PHYS 1135:

$x=x_{0}+v_{0 x} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} \quad v_{x}=v_{0 x}+a_{x} \Delta t \quad v_{x}^{2}=v_{0 x}^{2}+2 a_{x}\left(x-x_{0}\right) \quad \sum \vec{F}=m \vec{a}$
$F_{r}=-\frac{m v_{t}^{2}}{r} \quad P=\frac{F}{A} \quad \vec{p}=m \vec{v} \quad P=\frac{d W}{d t} \quad W=\int \vec{F} \cdot d \vec{S}$
$K=\frac{1}{2} m v^{2} \quad U_{f}-U_{i}=-W_{\text {conservative }} \quad E=K+U \quad E_{f}-E_{i}=\left(W_{\text {other }}\right)_{i \rightarrow f} \quad E=P_{\text {ave }} t$

Constants:
$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad m_{\text {electron }}=9.11 \times 10^{-31} \mathrm{~kg} \quad m_{\text {proton }}=1.67 \times 10^{-27} \mathrm{~kg} \quad e=1.6 \times 10^{-19} \mathrm{C}$
$c=3.0 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \quad k=\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \quad \epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}} \quad \mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{\mathrm{A}}$

Electric Force, Field, Potential and Potential Energy:

$\vec{F}=k \frac{q_{1} q_{2}}{r_{12}^{2}} \hat{r}_{12}$
$\vec{E}=k \frac{q}{r^{2}} \hat{r}$
$\vec{F}=q \vec{E}$
$\Delta V=-\int_{i}^{f} \vec{E} \cdot d \vec{s}$
$U=k \frac{q_{1} q_{2}}{r_{12}}$
$V=k \frac{q}{r}$
$\Delta U=q \Delta V$
$E_{x}=-\frac{\partial V}{\partial x}$
$\vec{p}=q \vec{d} \quad($ from - to +$)$
$\vec{\tau}=\vec{p} \times \vec{E}$
$U_{\text {dipole }}=-\vec{p} \cdot \vec{E}$
$\Phi_{E}=\int_{S} \vec{E} \cdot d \vec{A}$
$\oint_{S} \vec{E} \cdot d \vec{A}=\frac{q_{\text {enclosed }}}{\epsilon_{0}}$
$\lambda \equiv \frac{\text { charge }}{\text { length }}$
$\sigma \equiv \frac{\text { charge }}{\text { area }} \quad \rho \equiv \frac{\text { charge }}{\text { volume }}$

Circuits:
$C=\frac{Q}{V} \quad \frac{1}{C_{T}}=\sum \frac{1}{C_{i}}$
$C_{T}=\sum C_{i}$
$C_{0}=\frac{\epsilon_{0} A}{d}$
$C=\kappa C_{0}$
$U=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} Q V$
$I=\frac{d q}{d t}$
$J=\frac{I}{A}$
$\vec{J}=n q \vec{v}_{d}$
$\vec{J}=\sigma \vec{E} \quad V=I R$
$R=\rho \frac{L}{A}$
$\sigma=\frac{1}{\rho}$
$\rho=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right]$
$\sum I=0$
$\sum \Delta V=0$
$\frac{1}{R_{T}}=\sum \frac{1}{R_{i}}$
$R_{T}=\sum R_{i} \quad P=I V=\frac{V^{2}}{R}=I^{2} R$
$Q(t)=Q_{\text {final }}\left[1-e^{-t / \tau}\right]$
$Q(t)=Q_{0} e^{-t / \tau}$
$\tau=R C$

Exam Total

PHYS 2135 Exam I
February 18, 2020
Name: \qquad Section: \qquad

For questions $1-5$, select the best answer. For problems $6-9$, solutions must begin with an Official Starting Equation, when appropriate. Work must be shown to receive credit. Calculators are not allowed.
(8) \qquad 1. An electron is initially traveling vertically with velocity v_{0} and entering a region where there is a uniform electric field. The electric field deflects the electron to the right. What is the direction of the electric field?
[A] up
[B] down
[C] right
[D] left
(8) \qquad 2. A positive charge $+Q$ inside a spherical Gaussian surface of radius R generates a net electric flux Φ through the surface. Which of the following is true for the net electric flux through the surface, when a second positive charge $+Q$ is placed just outside the Gaussian sphere?
[A] increases
[B$]$ is zero
[C] does not change
[D] not enough information to determine
(8) \qquad 3. A charge is released from rest in a uniform electric field. It then moves under the influence of the electric field. Which of the following is true for the charge's potential energy?
[A] increases
[B] decreases
[C] does not changed
[D] not enough information to determine
(8) \qquad 4. A parallel-plate capacitor is connected to a battery. When the plates are pulled apart which of the following quantities remains unchanged?
[A] charge
[B] capacitance
[C] potential difference
[D] electric field
(8) \qquad 5 (Free). A slice of bread with peanut butter falls to the floor while being subjected to a strong electric field pointed in the upward direction. The peanut buttered bread
[A] is decelerated by the electric field
$[\mathrm{B}]$ is accelerated by the electric field
[C] is ignoring the gravity
[D] lands peanut butter side down, as it always does.
6. A charged plastic rod has a uniform charge per length λ and is shaped such that it has an arc of radius a and a straight segment of length a as illustrated. We wish to determine the electric field at the origin O. [You must solve the integrals to receive full credit.]
(15) (a) Determine the electric field due to the arc. Express your answer in unit vector notation.

$$
\vec{E}=
$$

(15) (b) Determine the electric field due to the straight segment. Express your answer in unit vector notation.

$$
\vec{E}=
$$

(10) (c) An electron is placed at the origin. Determine the force on the electron. Express your answer in unit vector notation.

7. Three point charges Q, q_{2}, and $3 Q$ are arranged in an equilateral triangle as depicted in the figure. q_{2} is unknown.
(10) (a) If the total potential energy of the set of charges is $k \frac{23 Q^{2}}{a}$, determine q_{2}.

$$
q_{2}=
$$

(10) (b) Determine the electric potential at the location of q_{2}. (Assume q_{2} is not present.)

$$
V_{2}=
$$

(10) (c) Determine the potential energy of q_{2} due to the other charges.

$$
U_{2}=
$$

(10) (d) Assume particle q_{2} has mass m and is released from rest. Determine q_{2} 's maximum speed.

8. An insulating sphere of radius a is uniformly charged with total negative charge $-Q$. It is surrounded by a concentric conducting spherical shell of unknown net charge Qs.
(a) Use Gauss law to determine the magnitude and direction of the electric field inside the insulating sphere, i.e., for distances $r<a$ from the center. Draw the Gaussian surface in the figure and label its radius.

(b) Find the electric field (magnitude and direction) for $a<r<b$. Draw the corresponding Gaussian surface in the figure and label its radius.

(5) (c) You observe that the electric field outside the conducting shell $(r>c)$
(5) (c) You observe that the electric field outside conducting shell in terms of the other system parameters.

(5) (d) Find the induced surface charges on the inner and outer surface of the conducting shell.

$Q_{b}=$	
$Q_{c}=$	

9. For the capacitor circuit shown $C_{1}=3 \mu \mathrm{~F}, C_{2}=6 \mu \mathrm{~F}, C_{3}=2 \mu \mathrm{~F}, C_{4}=5 \mu \mathrm{~F}$, and $C_{5}=6 \mu \mathrm{~F}$.
(20) (a) Find the equivalent capacitance.

$$
C_{T}=
$$

(20) (b) If the charge on C_{3} is $12 \mu \mathrm{C}$ find ΔV.

$$
\Delta V=
$$

