Official Starting Equations PHYS 2135, Engineering Physics II

From PHYS 1135:

$$x = x_0 + v_{0x}\Delta t + \frac{1}{2}a_x(\Delta t)^2$$
 $v_x = v_{0x} + a_x\Delta t$ $v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$ $\sum \vec{F} = m\vec{a}$

$$F_r = -\frac{mv_t^2}{r}$$
 $P = \frac{F}{A}$ $\vec{p} = m\vec{v}$ $P = \frac{dW}{dt}$ $W = \int \vec{F} \cdot d\vec{s}$

$$K = \frac{1}{2}mv^2$$
 $U_f - U_i = -W_{\text{conservative}}$ $E = K + U$ $E_f - E_i = (W_{\text{other}})_{i \to f}$ $E = P_{\text{ave}}t$

Constants:

$$g = 9.8 \frac{\rm m}{\rm s^2} \qquad m_{\rm electron} = 9.11 \times 10^{-31} {\rm kg} \qquad m_{\rm proton} = 1.67 \times 10^{-27} {\rm kg} \qquad e = 1.6 \times 10^{-19} {\rm C}$$

$$c = 3.0 \times 10^{8} \frac{\text{m}}{\text{s}} \qquad k = \frac{1}{4\pi\epsilon_{0}} = 9 \times 10^{9} \frac{\text{Nm}^{2}}{\text{C}^{2}} \qquad \epsilon_{0} = 8.85 \times 10^{-12} \frac{\text{C}^{2}}{\text{Nm}^{2}} \qquad \mu_{0} = 4\pi \times 10^{-7} \frac{\text{Tm}}{\text{A}}$$

Electric Force, Field, Potential and Potential Energy:

$$ec{F}=krac{q_1q_2}{r_{c2}^2}\hat{r}_{12}$$
 $ec{E}=krac{q}{r^2}\hat{r}$ $ec{F}=qec{E}$ $\Delta V=-\int_i^fec{E}\cdot dec{s}$

$$U = k \frac{q_1 q_2}{r_1}$$
 $V = k \frac{q}{r}$ $\Delta U = q \Delta V$ $E_x = -\frac{\partial V}{\partial x}$

$$ec{p} = q ec{d} \; \; ext{(from - to +)} \qquad \qquad ec{ au} = ec{p} imes ec{E} \qquad \qquad U_{ ext{dipole}} = -ec{p} \cdot ec{E}$$

$$\Phi_E = \int_S \; \vec{E} \cdot d\vec{A}$$
 $\qquad \qquad \oint_S \; \vec{E} \cdot d\vec{A} = \frac{q_{\rm enclosed}}{\epsilon_0} \qquad \qquad \lambda \equiv \frac{{\rm charge}}{{\rm length}} \qquad \qquad \sigma \equiv \frac{{\rm charge}}{{\rm area}} \qquad \qquad \rho \equiv \frac{{\rm charge}}{{\rm volume}}$

Circuits:

$$C = \frac{Q}{V}$$
 $\frac{1}{C_T} = \sum \frac{1}{C_i}$ $C_T = \sum C_i$ $C_0 = \frac{\epsilon_0 A}{d}$ $C = \kappa C_0$

$$U = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}QV$$
 $I = \frac{dq}{dt}$ $J = \frac{I}{A}$ $\vec{J} = nq\vec{v}_d$

$$\vec{J} = \sigma \vec{E}$$
 $V = IR$ $R = \rho \frac{L}{A}$ $\sigma = \frac{1}{\rho}$ $\rho = \rho_0 [1 + \alpha (T - T_0)]$

$$\sum I = 0 \qquad \qquad \sum \Delta V = 0 \qquad \qquad \frac{1}{R_T} = \sum \frac{1}{R_i} \qquad \qquad R_T = \sum R_i \qquad \qquad P = IV = \frac{V^2}{R} = I^2 R$$

$$Q(t) = Q_{\text{final}} \left[1 - e^{-t/\tau} \right]$$
 $Q(t) = Q_0 e^{-t/\tau}$ $\tau = RC$

Exam Total

PHYS 2135 Exam I February 18, 2020

/200	Name:		Section:
/200			
For questions 1-5, select the lan Official Starting Equation, we Calculators are not allowed.		•	•
the electron to the right	e there is a ur	raveling vertically with voliform electric field. The direction of the electric [C] right	electric field deflects
R generates a net elect	tric flux Ф thro flux through t de the Gauss [B	inside a spherical Gaus ough the surface. Which the surface, when a sec ian sphere?] is zero] not enough information	of the following is ond positive charge
· ,	nce of the ele energy?	rom rest in a uniform electric field. Which of the decreases not enough information	following is true for
	of the followin [B	tor is connected to a ba ng quantities remains ur] capacitance] electric field	
being subjected to a stream peanut buttered bread [A] is decelerated by the [B] is accelerated by the	rong electric f e electric field e electric field		
[C] is ignoring the gravi [D] lands peanut butter		s it always does.	/40

6. A charged plastic rod has a uniform charge per length λ and is shaped such that it has an arc of radius a and a straight segment of length a as illustrated. We wish to determine the electric field at the origin a. [You must solve the integrals to receive full credit.]

(15) (a) Determine the electric field due to the arc. Express your answer in unit vector notation.

(15) (b) Determine the electric field due to the straight segment. Express your answer in unit vector notation.

$$\vec{E} =$$

(10) (c) An electron is placed at the origin. Determine the force on the electron. Express your answer in unit vector notation.

7. Three point charges Q, q_2 , and 3Q are arranged in an equilateral triangle as depicted in the figure. q_2 is unknown.

(10) (a) If the total potential energy of the set of charges is $k \frac{23Q^2}{a}$, determine q_2 .

(10) (b) Determine the electric potential at the location of q_2 . (Assume q_2 is not present.)

$$V_2 =$$

(10) (c) Determine the potential energy of q_2 due to the other charges.

$$U_2 =$$

(10) (d) Assume particle q_2 has mass m and is released from rest. Determine q_2 's maximum speed.

$$v_{\rm max} =$$

(15) (b) Find the electric field (magnitude and direction) for a < r < b. Draw the corresponding Gaussian surface in the figure and label its radius.

(5) (c) You observe that the electric field outside the conducting shell (r > c) vanishes. Find the net charge Q_S of the conducting shell in terms of the other system parameters.

(5) (d) Find the induced surface charges on the inner and outer surface of the conducting shell.

$$Q_c =$$

/40

- **9.** For the capacitor circuit shown $C_1=3\mu F$, $C_2=6\mu F$, $C_3=2\mu F$, $C_4=5\mu F$, and $C_5=6\mu F$.
- (20) (a) Find the equivalent capacitance.

 $C_T =$

(20) (b) If the charge on C_3 is 12 μ C find ΔV .

 $\Delta V =$