Official Starting Equations

PHYS 2135, Engineering Physics II

From PHYS 1135:
$x=x_{0}+v_{0 x} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} \quad v_{x}=v_{0 x}+a_{x} \Delta t \quad v_{x}^{2}=v_{0 x}^{2}+2 a_{x}\left(x-x_{0}\right) \quad \sum \vec{F}=m \vec{a}$
$F_{r}=-\frac{m v_{t}^{2}}{r} \quad P=\frac{F}{A} \quad \vec{p}=m \vec{v} \quad P=\frac{d W}{d t} \quad W=\int \vec{F} \cdot d \vec{s}$
$K=\frac{1}{2} m v^{2} \quad U_{f}-U_{i}=-W_{\text {conservative }} \quad E=K+U \quad E_{f}-E_{i}=\left(W_{\text {other }}\right)_{i \rightarrow f} \quad E=P_{\text {ave }} t$

Constants:

$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad m_{\text {electron }}=9.11 \times 10^{-31} \mathrm{~kg}$
$m_{\text {proton }}=1.67 \times 10^{-27} \mathrm{~kg}$
$e=1.6 \times 10^{-19} \mathrm{C}$
$c=3.0 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \quad k=\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \quad \epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}} \quad \mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{\mathrm{A}}$

Electric Force, Field, Potential and Potential Energy:

$\vec{F}=k \frac{q_{1} q_{2}}{r_{12}^{2}} \hat{r}_{12}$
$\vec{E}=k \frac{q}{r^{2}} \hat{r}$
$\vec{F}=q \vec{E}$
$\Delta V=-\int_{i}^{f} \vec{E} \cdot d \vec{s}$
$U=k \frac{q_{1} q_{2}}{r_{12}}$
$V=k \frac{q}{r}$
$\Delta U=q \Delta V$
$E_{x}=-\frac{\partial V}{\partial x}$
$\vec{p}=q \vec{d}($ from - to +$)$
$\vec{\tau}=\vec{p} \times \vec{E}$
$U_{\text {dipole }}=-\vec{p} \cdot \vec{E}$
$\Phi_{E}=\int_{S} \vec{E} \cdot d \vec{A}$
$\oint_{S} \vec{E} \cdot d \vec{A}=\frac{q_{\text {enclosed }}}{\epsilon_{0}}$
$\lambda \equiv \frac{\text { charge }}{\text { length }}$
$\sigma \equiv \frac{\text { charge }}{\text { area }} \quad \rho \equiv \frac{\text { charge }}{\text { volume }}$

Circuits:

$C=\frac{Q}{V} \quad \frac{1}{c_{T}}=\sum \frac{1}{c_{i}}$
$C_{T}=\sum C_{i}$
$C_{0}=\frac{\epsilon_{0} A}{d}$
$C=\kappa C_{0}$
$U=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} Q V$
$I=\frac{d q}{d t}$
$J=\frac{I}{A}$
$\vec{J}=n q \vec{v}_{d}$
$\vec{J}=\sigma \vec{E} \quad V=I R$
$R=\rho \frac{L}{A}$
$\sigma=\frac{1}{\rho}$
$\rho=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right]$
$\sum I=0$
$\sum \Delta V=0$
$Q(t)=Q_{\text {final }}\left[1-e^{-t / \tau}\right]$
$\frac{1}{R_{T}}=\sum \frac{1}{R_{i}}$
$R_{T}=\sum R_{i}$
$P=I V=\frac{V^{2}}{R}=I^{2} R$
$Q(t)=Q_{0} e^{-t / \tau} \quad \tau=R C$

Integral:

$\int \frac{d u}{\left(u^{2}+a^{2}\right)^{3 / 2}}=\frac{u}{a^{2} \sqrt{u^{2}+a^{2}}}+c$

Exam Total

PHYS 2135 Exam I
September 20, 2022
Name: \qquad Section: \qquad

For questions 1-5, select the best answer. For problems 6-10, solutions must begin with an Official Starting Equation, when appropriate. Work must be shown to receive credit. Calculators are not allowed. Use appropriate units. Provide answers in terms of given variable and fundamental constants.
(8) \qquad 1. An electron is initially traveling horizontally (+ x-direction) with a speed v_{0} enters a region where there is a uniform electric field. The electron is observed to slow down. What is the direction of the electric field?
[A] +y-direction
[B] -y-direction
[C] +x-direction
[D] -x-direction
(8) \qquad 2. The figure shows an electric dipole with its moment oriented at an angle θ with respect to a uniform electric field. For this orientation the torque on the dipole is \qquad .
[A] $p E \sin \theta$ into the paper
[B] $p E \sin \theta$ out of the paper
[C] $p E \cos \theta$ into the paper
[D] $p E \cos \theta$ out of the paper
(8) \qquad 3. A positive point charge Q is fixed at the origin so it cannot move. Another point charge of mass m and charge q is held at a distance R from Q. The charge q is then released. When q is a distance $4 R$ away from Q, its speed will be:
[A] $\sqrt{\frac{2 k Q q}{m R}}$
[B] $\sqrt{\frac{6 k Q q}{4 m R}}$
[C] $\sqrt{\frac{4 k Q q}{m R}}$
[D] $\sqrt{\frac{k Q q}{2 m R}}$
(8) \qquad 4. Four capacitors are arranged as shown. The equivalent capacitance for the arrangement is given by:
[A] 6 C
[B] 3C
[C] 3C/2
[D] 2C/3

(8) \qquad 5. (Free) What is 42 ?
[A] Life
[B] The universe
[C] Everything
[D] Six times seven
6. A charge Q is uniformly distributed along the y-axis between the origin and $(0, b)$, as illustrated. One wishes to determine the electric field at point P located at (a, b).

(25) Write the integral to determine \vec{E}_{P} the electric field at P. [Do not solve the integral. Express your answer in unit vector notation.]

$$
\vec{E}_{P}=
$$

7. Three charges are arranged along the x-axis as illustrated. $q_{1}=8 q_{0}$ is at $x=-a . \quad q_{2}=q_{0}$ is at the origin. $q_{3}=-12 q_{0}$ is at $x=2 a$.

(15) Determine $\vec{F}_{2 T}$ the total force acting on q_{2}.

8. A wire of finite length has a uniform linear charge density λ_{0} and is bent into the shape shown in the figure. Assume the potential is zero at infinity.

(20) Find V_{A} the electric potential at point P (the origin) due to the curved portion of the charged wire.

$$
V_{A}=
$$

(10) Find V_{V} the electric potential at point P due to the vertical linear portion of the charged wire.

(10) Find V_{H} the electric potential at point P due to the horizontal linear portion of the charged wire.

9. A very long (~infinite) cylindrical solid conductor of radius a carrying a positive charge per unit length λ is coaxial with an equally long conducting cylindrical shell of inner radius $b>a$ and outer radius $c>b$ carrying a negative charge per unit length $-\lambda$ (see figure).
(10) a. Determine the electric field inside the inner conductor $(r<a)$.

$$
\vec{E}=
$$

(5) b. Determine the surface charge per length λ_{a} on the surface of the inner conductor ($r=a$).

$$
\lambda_{a}=
$$

(5) c. Determine the surface charge per length λ_{b} on the inner surface of the outer conductor ($r=b$).

$$
\lambda_{b}=
$$

(5) d. Determine the surface charge per length λ_{c} on the outer surface of the outer conductor ($r=c$).

$$
\lambda_{c}=
$$

e. Determine the electric field (magnitude and direction) between the two conductors ($a<r<b$)
as a function of the surface charge per length $\quad \vec{E}=$ λ_{a}, the distance from the axis of the coaxial cable, ε_{0}, and a.
10. Three capacitors are connected to a 10 V battery as illustrated. The capacitors have values of $C_{1}=5 / 2 \mathrm{nF}, C_{2}=10 \mathrm{nF}$ and $C_{3}=8 \mathrm{nF}$.
(10) a. Calculate the equivalent capacitance C_{12} of capacitors C_{1}
 and C_{2}.

$$
C_{12}=
$$

(10) b. Calculate the equivalent capacitance of the entire circuit $C_{e q}$.

$$
C_{e q}=
$$

(10) c. Calculate the charge Q_{3} on capacitor C_{3}.

$$
Q_{3}=
$$

(10) d. Calculate the voltage V_{1} of capacitor C_{1}.

