Official Starting Equations

PHYS 2135, Engineering Physics II

From PHYS 1135:
$x=x_{0}+v_{0 x} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} \quad v_{x}=v_{0 x}+a_{x} \Delta t \quad v_{x}^{2}=v_{0 x}^{2}+2 a_{x}\left(x-x_{0}\right) \quad \sum \vec{F}=m \vec{a}$
$F_{r}=-\frac{m v_{t}^{2}}{r} \quad P=\frac{F}{A} \quad \vec{p}=m \vec{v} \quad P=\frac{d W}{d t} \quad W=\int \vec{F} \cdot d \vec{s}$
$K=\frac{1}{2} m v^{2} \quad U_{f}-U_{i}=-W_{\text {conservative }} \quad E=K+U \quad E_{f}-E_{i}=\left(W_{\text {other }}\right)_{i \rightarrow f} \quad E=P_{\text {ave }} t$

Constants:

$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad m_{\text {electron }}=9.11 \times 10^{-31} \mathrm{~kg}$
$m_{\text {proton }}=1.67 \times 10^{-27} \mathrm{~kg}$
$e=1.6 \times 10^{-19} \mathrm{C}$
$c=3.0 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \quad k=\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \quad \epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}} \quad \mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{\mathrm{A}}$

Electric Force, Field, Potential and Potential Energy:

$\vec{F}=k \frac{q_{1} q_{2}}{r_{12}^{2}} \hat{r}_{12}$
$\vec{E}=k \frac{q}{r^{2}} \hat{r}$
$\vec{F}=q \vec{E}$
$\Delta V=-\int_{i}^{f} \vec{E} \cdot d \vec{s}$
$U=k \frac{q_{1} q_{2}}{r_{12}}$
$V=k \frac{q}{r}$
$\Delta U=q \Delta V$
$E_{x}=-\frac{\partial V}{\partial x}$
$\vec{p}=q \vec{d}($ from - to +$)$
$\vec{\tau}=\vec{p} \times \vec{E}$
$U_{\text {dipole }}=-\vec{p} \cdot \vec{E}$
$\Phi_{E}=\int_{S} \vec{E} \cdot d \vec{A}$
$\oint_{S} \vec{E} \cdot d \vec{A}=\frac{q_{\text {enclosed }}}{\epsilon_{0}}$
$\lambda \equiv \frac{\text { charge }}{\text { length }}$
$\sigma \equiv \frac{\text { charge }}{\text { area }} \quad \rho \equiv \frac{\text { charge }}{\text { volume }}$

Circuits:

$C=\frac{Q}{V}$
$\frac{1}{c_{T}}=\sum \frac{1}{c_{i}}$
$C_{T}=\sum C_{i}$
$C_{0}=\frac{\epsilon_{0} A}{d}$
$C=\kappa C_{0}$
$U=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} Q V$
$I=\frac{d q}{d t}$
$J=\frac{I}{A}$
$\vec{J}=n q \vec{v}_{d}$
$\vec{J}=\sigma \vec{E}$
$V=I R$
$R=\rho \frac{L}{A}$
$\sigma=\frac{1}{\rho}$
$\rho=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right]$
$\sum I=0$
$\Sigma \Delta V=0$
$\frac{1}{R_{T}}=\sum \frac{1}{R_{i}}$
$R_{T}=\sum R_{i} \quad P=I V=\frac{V^{2}}{R}=I^{2} R$
$Q(t)=Q_{\text {final }}\left[1-e^{-t / \tau}\right]$
$Q(t)=Q_{0} e^{-t / \tau} \quad \tau=R C$

Integral:

$\int \frac{d u}{\left(u^{2}+a^{2}\right)^{3 / 2}}=\frac{u}{a^{2} \sqrt{u^{2}+a^{2}}}+c$

Exam Total

PHYS 2135 Exam I
September 21, 2021
Name: \qquad Section: \qquad

For questions 1-5, select the best answer. For problems 6-11, solutions must begin with an Official Starting Equation, when appropriate. Work must be shown to receive credit. Calculators are not allowed.
(8)__ A 1. Two charged particles Q_{1} and Q_{2} are placed a distance d apart and experience a Coulomb force of magnitude F from one another. If the magnitude of charge Q_{2} is doubled and the distance d is tripled, what is the new magnitude of the Coulomb force?
[A] (2/9)F
[B] (2/3)F
[C] (4/3)F
[D] F
(8)_A 2. A negatively charged electron is placed in an electric field which points to the right, as illustrated. In which direction will the electron be accelerated?
[A] Left
[B] Right
[C] Up
[D] Down

(8)_A 3. Two concentric spherical surfaces enclose a point charge Q. The radius of the outer sphere is three times that of the inner one. Which statement is true concerning the electric fluxes crossing these two surfaces?
[A] Inner Sphere Flux = Outer Sphere Flux
[B] Outer Sphere Flux > Inner Sphere Flux
[C] Inner Sphere Flux > Outer Sphere Flux
[D] One cannot compare the two fluxes
(8)_B 4. A charged particle with non-zero velocity enters a region where the electric potential is constant, and no other forces are present. Which statement best describes the particle's motion in this region?
[A] The particle will stop moving
[B] The particle's speed and direction remain constant
[C] Particle will accelerate due to the non-zero electric field
[D] Not enough information to know
(8) \qquad 5. (Free) Which best describes an S\&T student?
[A] Naturally curious
[B] Unshakeable love of learning and discovery
[C] Craves immersive opportunities
[D] Desires to leave a mark on the world
6. A charge $Q_{1}=-4 q_{0}$ is uniformly distributed along an arc of radius $R=4 a$ extending from the negative x-axis to the negative y-axis. A second charge $Q_{2}=$ $6 q_{0}$ is located on the x-axis at $x=3 a$.

(5) (a) Determine the charge per unit length $\lambda_{\text {arc }}$ of the "arc" of charge.

$$
\lambda_{a r c}=\frac{Q_{1}}{(4 a)\left(\frac{\pi}{2}\right)}=-\frac{4 q_{0}}{2 a \pi}
$$

$$
\lambda_{a r c}=-\frac{2 q_{0}}{\pi a}
$$

(20) (b) Determine the electric field at the origin due to the "arc" of charge. Express your answer in unit vector notation.

$$
\begin{gathered}
d q=\lambda(4 a) d \phi=\left(-\frac{2 q_{0}}{\pi a}\right)(4 a d \phi)=-\frac{8 q_{0}}{\pi} d \phi \\
r=4 a \quad \hat{r}=-\cos \phi \hat{\imath}-\sin \phi \hat{\jmath} \\
\vec{E}_{\text {arc }}=-\frac{k q_{0}}{2 \pi a^{2}}(\hat{\imath}+\hat{\jmath}) \\
\vec{E}_{\text {arc }}=\frac{k q_{0}}{2 \pi a^{2}}[\sin \phi \hat{\imath}-\cos \phi \hat{\jmath}]_{\pi}^{3 \pi / 2}=\frac{k q_{0}}{2 \pi a^{2}}(-\hat{\imath}-\hat{\jmath})
\end{gathered}
$$

(15) (c) Determine the electric field at the origin due to the point charge. Express your answer in unit vector notation.

$$
\vec{E}_{\text {point }}=k \frac{q}{r^{2}} \hat{r}=k \frac{6 q_{0}}{(3 a)^{2}}(-\hat{\imath})
$$

$$
\vec{E}_{\text {point }}=-\frac{2 k q_{0}}{3 a^{2}} \hat{\imath}
$$

7. A charge Q is uniformly distributed along the y-axis from $y=2 a$ to $y=6 a$.
(15) (a) Determine the electric potential at the origin due to the line of charge.

$$
\begin{aligned}
& d Q=\frac{Q}{4 a} d y \\
& V=\int k \frac{d q}{r^{2}} \hat{r}=\int_{2 a}^{6 a} k \frac{\frac{Q}{4 a} \ln (3)}{y} d y \\
& \quad=\frac{k Q}{4 a} \ln \left(\frac{6 a}{2 a}\right)
\end{aligned}
$$

(5) (b) Determine the potential energy of a charge q_{0} if it were placed at the origin

$$
U=q V \quad U=\frac{k Q q_{0}}{4 a} \ln (3)
$$

8. A positive point charge $+Q_{1}$ is fixed at point P. A second positive charge with mass M and charge $+Q_{2}$ is initially fixed at point A, a distance R_{i} from point P. The second charge is then released.

(15) (a) Determine the speed of the second charge when it reaches point B, a distance $R_{f}=3 R_{i}$ from point P.

$$
\begin{aligned}
& U_{0}+K_{0}=U_{f}+K_{f} \\
& k \frac{Q_{1} Q_{2}}{R_{i}}+0=k \frac{Q_{1} Q_{2}}{3 R_{i}}+\frac{1}{2} M v^{2} \\
& \quad k \frac{Q_{1} Q_{2}}{R_{i}}\left(1-\frac{1}{3}\right)=\frac{1}{2} M v^{2}
\end{aligned}
$$

$$
v=\sqrt{\frac{4 k Q_{1} Q_{2}}{3 M R_{i}}}
$$

(5) (b) Which point $(A$ or $B)$ is at a higher electric potential?

9. A long insulating cylindrical solid of radius a has a charge per length 2λ uniformly distributed throughout its volume. A conducting cylindrical shell of inner radius b and outer radius c has a charge per length 4λ and is coaxial with the insulating solid.

End View

Side View
(10) (a) Determine the electric field within the insulating cylindrical solid. $(r<a)$

$$
\begin{array}{cr}
\oint \vec{E} \cdot d \vec{A}=\frac{q_{\mathrm{enc}}}{\epsilon_{0}} & \vec{E}=\frac{\lambda r}{\pi \epsilon_{0} a^{2}} \hat{r} \\
E(2 \pi r L)=\frac{2 \lambda L\left(\frac{\pi r^{2} L}{\pi a^{2} L}\right)}{\epsilon_{0}} &
\end{array}
$$

(10) (b) Determine the electric field between the insulating cylindrical solid and the conducting shell. $(a<r<b)$.

$$
\begin{aligned}
& \oint \vec{E} \cdot d \vec{A}=\frac{q_{\mathrm{enc}}}{\epsilon_{0}} \\
& E(2 \pi r L)=\frac{2 \lambda L}{\epsilon_{0}}
\end{aligned}
$$

(10) (c) Determine the electric field within the conducting shell. $(b<r<c)$

$$
\vec{E}=0
$$

(10) (d) Determine the charge per length on the inner and outer surfaces of the conducting shell.

$$
\begin{gathered}
\oint \vec{E} \cdot d \vec{A}=0 \rightarrow 0=q_{\mathrm{enc}}=2 \lambda L+\lambda_{b} L \\
\lambda_{b}+\lambda_{c}=4 \lambda
\end{gathered}
$$

10. Consider the illustrated network.
(a) Calculate the total (equivalent) capacitance of the network.

$$
\begin{gathered}
C_{12}=\left(\frac{1}{10 \mu \mathrm{~F}}+\frac{1}{10 \mu \mathrm{~F}}\right)^{-1}=5 \mu \mathrm{~F} \\
C_{123}=5 \mu \mathrm{~F}+5 \mu \mathrm{~F}=10 \mu \mathrm{~F} \\
C_{T}=\left(\frac{1}{10} \mu \mathrm{~F}+\frac{1}{10 \mu \mathrm{~F}}\right)^{-1}
\end{gathered}
$$

(15) (b) If the charge on capacitor C_{4} is $100 \mu \mathrm{C}$, what is the battery voltage V_{0} ?

$$
\begin{gathered}
C_{T} V_{0}=Q_{T}=Q_{4} \\
V_{0}=\frac{Q_{4}}{C_{T}}=\frac{100 \mu \mathrm{C}}{5 \mu \mathrm{~F}}
\end{gathered}
$$

$$
V_{0}=20 \mathrm{~V}
$$

11. A small animal shed has a flat metal roof and a metal floor. The square roof and floor measure approximately one meter by one meter. The roof is supported by nonconducting wooden posts that are 20 cm tall. During a thunderstorm the potential difference between the roof and floor is measured to be 20,000 volts.

(10) Model the building as if it were a parallel-plate capacitor and calculate the amount of charge on the roof and the floor of the building.

$$
Q=8.85 \mathrm{nC}
$$

$Q=C V=\frac{A \epsilon_{0} V}{d}=\frac{(1 \mathrm{~m})^{2}\left(8.85 \times \mathrm{C}^{2} / \mathrm{Nm}^{2}\right)\left(2 \times 10^{4} \mathrm{~V}\right)}{2 \times 10^{-1} \mathrm{~m}}$

