Official Starting Equations

PHYS 2135, Engineering Physics II

From PHYS 1135:
$x=x_{0}+v_{0 x} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} \quad v_{x}=v_{0 x}+a_{x} \Delta t \quad v_{x}^{2}=v_{0 x}^{2}+2 a_{x}\left(x-x_{0}\right) \quad \sum \vec{F}=m \vec{a}$
$F_{r}=-\frac{m v_{t}^{2}}{r} \quad P=\frac{F}{A} \quad \vec{p}=m \vec{v} \quad P=\frac{d W}{d t} \quad W=\int \vec{F} \cdot d \vec{s}$
$K=\frac{1}{2} m v^{2} \quad U_{f}-U_{i}=-W_{\text {conservative }} \quad E=K+U \quad E_{f}-E_{i}=\left(W_{\text {other }}\right)_{i \rightarrow f} \quad E=P_{\text {ave }} t$

Constants:

$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad m_{\text {electron }}=9.11 \times 10^{-31} \mathrm{~kg}$
$m_{\text {proton }}=1.67 \times 10^{-27} \mathrm{~kg}$
$e=1.6 \times 10^{-19} \mathrm{C}$
$c=3.0 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \quad k=\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \quad \epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}} \quad \mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{\mathrm{A}}$

Electric Force, Field, Potential and Potential Energy:

$\vec{F}=k \frac{q_{1} q_{2}}{r_{12}^{2}} \hat{r}_{12}$
$\vec{E}=k \frac{q}{r^{2}} \hat{r}$
$\vec{F}=q \vec{E}$
$\Delta V=-\int_{i}^{f} \vec{E} \cdot d \vec{s}$
$U=k \frac{q_{1} q_{2}}{r_{12}}$
$V=k \frac{q}{r}$
$\Delta U=q \Delta V$
$E_{x}=-\frac{\partial V}{\partial x}$
$\vec{p}=q \vec{d}($ from - to +$)$
$\vec{\tau}=\vec{p} \times \vec{E}$
$U_{\text {dipole }}=-\vec{p} \cdot \vec{E}$
$\Phi_{E}=\int_{S} \vec{E} \cdot d \vec{A}$
$\oint_{S} \vec{E} \cdot d \vec{A}=\frac{q_{\text {enclosed }}}{\epsilon_{0}}$
$\lambda \equiv \frac{\text { charge }}{\text { length }}$
$\sigma \equiv \frac{\text { charge }}{\text { area }} \quad \rho \equiv \frac{\text { charge }}{\text { volume }}$

Circuits:

$C=\frac{Q}{V}$
$\frac{1}{c_{T}}=\sum \frac{1}{c_{i}}$
$C_{T}=\sum C_{i}$
$C_{0}=\frac{\epsilon_{0} A}{d}$
$C=\kappa C_{0}$
$U=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} Q V$
$I=\frac{d q}{d t}$
$J=\frac{I}{A}$
$\vec{J}=n q \vec{v}_{d}$
$\vec{J}=\sigma \vec{E}$
$V=I R$
$R=\rho \frac{L}{A}$
$\sigma=\frac{1}{\rho}$
$\rho=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right]$
$\sum I=0$
$\Sigma \Delta V=0$
$\frac{1}{R_{T}}=\sum \frac{1}{R_{i}}$
$R_{T}=\sum R_{i} \quad P=I V=\frac{V^{2}}{R}=I^{2} R$
$Q(t)=Q_{\text {final }}\left[1-e^{-t / \tau}\right]$
$Q(t)=Q_{0} e^{-t / \tau} \quad \tau=R C$

Integral:

$\int \frac{d u}{\left(u^{2}+a^{2}\right)^{3 / 2}}=\frac{u}{a^{2} \sqrt{u^{2}+a^{2}}}+c$

Exam Total

PHYS 2135 Exam I
September 21, 2021
Name: \qquad Section: \qquad

For questions 1-5, select the best answer. For problems 6-11, solutions must begin with an Official Starting Equation, when appropriate. Work must be shown to receive credit. Calculators are not allowed.
(8) \qquad 1. Two charged particles Q_{1} and Q_{2} are placed a distance d apart and experience a Coulomb force of magnitude F from one another. If the magnitude of charge Q_{2} is doubled and the distance d is tripled, what is the new magnitude of the Coulomb force?
[A] (2/9)F
[B] $(2 / 3) F$
[C] (4/3)F
[D] F
(8) \qquad 2. A negatively charged electron is placed in an electric field which points to the right, as illustrated. In which direction will the electron be accelerated?
[A] Left
[B] Right
[C] Up
[D] Down

(8) \qquad 3. Two concentric spherical surfaces enclose a point charge Q. The radius of the outer sphere is three times that of the inner one. Which statement is true concerning the electric fluxes crossing these two surfaces?
[A] Inner Sphere Flux = Outer Sphere Flux
[B] Outer Sphere Flux > Inner Sphere Flux
[C] Inner Sphere Flux > Outer Sphere Flux
[D] One cannot compare the two fluxes
(8) \qquad 4. A charged particle with non-zero velocity enters a region where the electric potential is constant, and no other forces are present. Which statement best describes the particle's motion in this region?
[A] The particle will stop moving
[B] The particle's speed and direction remain constant
[C] Particle will accelerate due to the non-zero electric field
[D] Not enough information to know
(8) \qquad 5. (Free) Which best describes an S\&T student?
[A] Naturally curious
[B] Unshakeable love of learning and discovery
[C] Craves immersive opportunities
[D] Desires to leave a mark on the world
6. A charge $Q_{1}=-4 q_{0}$ is uniformly distributed along an arc of radius $R=4 a$ extending from the negative x-axis to the negative y-axis. A second charge $Q_{2}=$ $6 q_{0}$ is located on the x-axis at $x=3 a$.

(5) (a) Determine the charge per unit length $\lambda_{\text {arc }}$ of the "arc" of charge.

$$
\lambda_{\text {arc }}=
$$

(20) (b) Determine the electric field at the origin due to the "arc" of charge. Express your answer in unit vector notation.

$$
\vec{E}_{\text {arc }}=
$$

(15) (c) Determine the electric field at the origin due to the point charge. Express your answer in unit vector notation.

$$
\vec{E}_{\text {point }}=
$$

7. A charge Q is uniformly distributed along the y-axis from $y=2 a$ to $y=6 a$.
(15) (a) Determine the electric potential at the origin due to the line of charge.

(5) (b) Determine the potential energy of a charge q_{0} if it were placed at the origin
8. A positive point charge $+Q_{1}$ is fixed at point P. A second positive charge with mass M and charge $+Q_{2}$ is initially fixed at point A, a distance R_{i} from point P. The second charge is then released.

(15) (a) Determine the speed of the second charge when it reaches point B, a distance $R_{f}=3 R_{i}$ from point P.

$$
v=
$$

(5) (b) Which point $(A$ or $B)$ is at a higher electric potential?

9. A long insulating cylindrical solid of radius a has a charge per length 2λ uniformly distributed throughout its volume. A conducting cylindrical shell of inner radius b and outer radius c has a charge per length 4λ and is coaxial with the insulating solid.

Side View

End View
(10) (a) Determine the electric field within the insulating cylindrical solid. $(r<a)$

$$
\vec{E}=
$$

(10) (b) Determine the electric field between the insulating cylindrical solid and the conducting shell. ($a<r<b$).

$$
\vec{E}=
$$

(10) (c) Determine the electric field within the conducting shell. $(b<r<c)$

$$
\vec{E}=
$$

(10) (d) Determine the charge per length on the inner and outer surfaces of the conducting shell.

10. Consider the illustrated network.
(15) (a) Calculate the total (equivalent) capacitance of the network.

(15) (b) If the charge on capacitor C_{4} is $100 \mu \mathrm{C}$, what is the battery voltage V_{0} ?

$$
V_{0}=
$$

11. A small animal shed has a flat metal roof and a metal floor. The square roof and floor measure approximately one meter by one meter. The roof is supported by nonconducting wooden posts that are 20 cm tall. During a thunderstorm the potential difference between the roof and floor is measured to be 20,000 volts.

(10) Model the building as if it were a parallel-plate capacitor and calculate the amount of charge on the roof and the floor of the building.

