Exam Total

PHYS 2135 Exam I
September 17, 2019
Name: \qquad Section: \qquad

For questions 1-5, select the best answer. For problems 6-9, solutions must begin with an Official Starting Equation, when appropriate. Work must be shown to receive credit. Calculators are not allowed.
(8) A 1. A proton is moving with speed \vec{v}_{0} in a uniform electric field. Which of the four dotted lines best represents the trajectory of the proton?
[A] 1
[B] 2
[C] 3
[D] 4

(8) \qquad 2. The electric potential in a certain region of space is
$V=6 x y^{2}\left(\mathrm{~V} / \mathrm{m}^{4}\right)-4 x^{2}\left(\mathrm{~V} / \mathrm{m}^{3}\right)+62 y\left(\mathrm{~V} / \mathrm{m}^{2}\right)$. The x-component of the electric field at $x=2.0 \mathrm{~m}, \mathrm{y}=1.0 \mathrm{~m}$ is \ldots
[A] $+10 \mathrm{~V} / \mathrm{m}$
[B] $-10 \mathrm{~V} / \mathrm{m}$
[C] -65 V/m
[D] $58 \mathrm{~V} / \mathrm{m}$
(8) \qquad 3. A cube of side L has a vertical electric field of uniform magnitude $3 E$ at its top surface and of magnitude $2 E$ at its bottom surface. What is the charge contained in the cube?
[A] 0
$[B] \varepsilon_{0} E L^{2}$
$[\mathrm{C}]-\varepsilon_{0} \mathrm{EL}^{2}$
[D] $5 \varepsilon_{0} \mathrm{EL}^{2}$.

(8) \qquad 4. An electric dipole is released in a uniform electric field, as illustrated. Which direction will the dipole rotate and what is its potential energy? [The dipole is in the plane of the paper.]
[A] counterclockwise, U is near its minimum
$[B]$ counterclockwise, U is near its maximum
[C] clockwise, U is near its minimum
[D] clockwise, U is near its maximum

(8) \qquad 5 (Free). For those reading ahead, what's the difference between an Ohm and a Coulomb?
[A]

[B] Ask Sherlock Ohms
[C] Only Ohm can resist Coulomb.
[D] Ohm doesn't know how to conduct himself.
6. Two point charges are placed on the x-axis. The first point charge $+Q$ is placed at $x=0$ and the second point charge $+9 Q$ is placed at $x=D$.
(10) (a) Find a location on the x-axis that the net electric field is zero. Express your answer in terms of the given parameters.

OSE: $\vec{E}=k \frac{q}{r^{2}} \hat{r}$

$$
\begin{gathered}
\vec{E}_{T}=\vec{E}_{1}+\vec{E}_{2}=k \frac{Q}{x^{2}} \hat{\imath}-k \frac{9 Q}{(D-x)^{2}} \hat{\imath} \\
\frac{9}{(D-x)^{2}}=\frac{1}{x^{2}} \\
3 x=D-x \\
x=\frac{D}{4}
\end{gathered}
$$

(10) (b) A third point charge $+q_{0}$ is located midway between the two point charges, $+Q$ and $+9 Q$. What is the net force on the third charge? Express your answer in unit vector notation.

OSE: $\vec{F}=k \frac{q_{2} q_{2}}{r_{12}^{2}} \hat{r}_{12}$

$$
\begin{aligned}
& \vec{F}_{T}=\vec{F}_{1}+\vec{F}_{2}=\frac{k q_{0} Q}{\left(\frac{D}{2}\right)^{2}} \hat{\imath}-\frac{k q_{0}(9 Q)}{\left(\frac{D}{2}\right)^{2}} \hat{\imath}=\frac{4 k q_{0} Q}{D^{2}}(1-9) \hat{\imath} \\
& \vec{F}_{T}=-\frac{32 k q_{0} Q}{D^{2}} \hat{\imath}
\end{aligned}
$$

(20) (c) Find the electric field at point ($0, D$). If a third point charge $+q_{0}$ is located at $(0, D)$, what is the net force on the third charge? Express your answer in unit vector notation.

OSE: $\vec{E}=k \frac{q}{r^{2}} \hat{r}$

$$
\hat{r}=-\cos 45^{\circ} \hat{\imath}+\sin 45^{\circ} \hat{\jmath}
$$

$$
\begin{array}{lr}
\vec{E}_{T}=\vec{E}_{1}+\vec{E}_{2}=\frac{k Q}{D^{2}} \hat{\jmath}+\frac{9 k Q}{2 D^{2}}\left(-\frac{1}{\sqrt{2}} \hat{\imath}+\frac{1}{\sqrt{2}} \hat{\jmath}\right) & \hat{r}=-\frac{\hat{\imath}}{\sqrt{2}}+\frac{\hat{\jmath}}{\sqrt{2}} \\
\vec{E}_{T}=-\frac{9 k Q}{2 D^{2} \sqrt{2}} \hat{\imath}+\frac{k Q}{D^{2}}\left(1+\frac{9}{2 \sqrt{2}}\right) \hat{\jmath} & \\
\vec{F}=q_{0} \vec{E}=-\frac{9 k q_{0} Q}{2 D^{2} \sqrt{2}} \hat{\imath}+\frac{k q_{0} Q}{D^{2}}\left(1+\frac{9}{2 \sqrt{2}}\right) \hat{\jmath} &
\end{array}
$$

7. An arc of radius R and a rod of length R are located as shown. The arc subtends an angle of 120 degrees. Both the arc and the rod have a negative uniform charge per unit length $-\lambda$. Express your answers with R, λ, and constants. If your work involves an integral, you need to perform the integral to get a full credit.

(6) (a) Determine the total charge sum of the arc and the rod.

OSE: $\lambda \equiv \frac{\text { charge }}{\text { length }}$

$$
Q=-\lambda\left[2 \pi R\left(\frac{1}{3}\right)+R\right]
$$

$$
Q=-\lambda R\left(\frac{2}{3} \pi+1\right)
$$

(12) (b) Determine the electric potential from the arc at the origin. You may assume that $V=0$ at infinity.

OSE: $V=k \frac{q}{r}$

$$
d V=k \frac{d q}{r}
$$

$$
\begin{aligned}
& d V=-k \lambda d \phi \\
& V=-k \lambda \int_{\pi / 3}^{\pi} d \phi=-\frac{2 \pi k \lambda}{3}
\end{aligned}
$$

(12) (c) Determine the electric potential from the rod at the origin. You may assume that $V=0$ at infinity.

OSE: $V=k \frac{q}{r}$

$$
V=-k \lambda \int_{R}^{2 R} \frac{d r}{r}=-k \lambda \ln 2
$$

$d V=k \frac{d q}{r}$
(10) (d) An electron (mass m and charge $-e$) is released from rest at the origin. Determine the maximum velocity of the electron after it is released.

OSE: $E_{f}-E_{i}=\left(W_{\text {other }}\right)_{i \rightarrow f}$

$$
\begin{aligned}
& U_{i}+K_{i}=U_{f}+K_{f} \\
& U_{i}=-e V=e k \lambda\left(\frac{2}{3} \pi+\ln 2\right) \\
& U_{i}=\frac{1}{2} m v^{2}+U_{f} \leq \frac{1}{2} m v_{\max }^{2} \\
& v_{\max }=\sqrt{\frac{2 e k \lambda}{m}\left(\frac{2}{3} \pi+\ln 2\right)}
\end{aligned}
$$

8. An infinitely long insulating cylinder of radius a with uniform charge density ρ lies along the axis of symmetry of an infinitely long conducting cylindrical shell of inner radius a and outer radius b, as illustrated. The electric field outside the conducting cylindrical shell $(r>b)$ is found to be zero.
(15) (a) Determine the electric field inside the insulating cylinder $(0<r<a)$.
$\oint \vec{E} \cdot d \vec{A}=\frac{q_{\text {enc }}}{\epsilon_{0}}$

$E(2 \pi r L)=\frac{\rho\left(\pi r^{2} L\right)}{\epsilon_{0}}$
$\vec{E}=\frac{\rho r}{2 \epsilon_{0}} \hat{r}$
(10) (b) Determine the electric field within the conducting cylindrical shell $(a<r<b)$.
$\vec{E}=0$, inside the conductor
(10) (c) Express the surface charge density σ_{a} at the inner surface of the conducting shell in terms of variables introduced above.

$$
\begin{array}{lc}
\oint \vec{E} \cdot d \vec{A}=\frac{q_{\mathrm{enc}}}{\epsilon_{0}} & \pi a^{2} L \rho+2 \pi a L \sigma_{a}=0 \\
0=\frac{q_{\mathrm{enc}}}{\epsilon_{0}}=>q_{\mathrm{enc}}=0 & \sigma_{a}=-\frac{a \rho}{2}
\end{array}
$$

(5) (d) Express the surface charge density σ_{b} at the outer surface of the conducting shell in terms of variables introduced above.
$\oint \vec{E} \cdot d \vec{A}=\frac{q_{\text {enc }}}{\epsilon_{0}}$
$0=\frac{q_{\text {enc }}}{\epsilon_{0}}$
$\pi a^{2} L \rho+2 \pi a L \sigma_{a}+2 \pi b L \sigma_{b}=0$
$\sigma_{b}=0$
9. Consider the given circuit. [Provide numerical answers for each part.]

(15) (a) Determine C_{T}, the total equivalent capacitance.

$$
\begin{aligned}
& C_{13}=\left(\frac{1}{9 \mathrm{pF}}+\frac{1}{18 \mathrm{pF}}\right)^{-1}=6 \mathrm{pF} \\
& C_{T}=6 \mathrm{pF}+2 \mathrm{pF} \\
& C_{T}=8 \mathrm{pF}
\end{aligned}
$$

(15) (b) Determine Q_{3}, the charge on C_{3}.

$$
Q_{3}=Q_{13}=C_{13} V_{B}=(6 \mathrm{pF})(6 \mathrm{~V})
$$

$$
Q_{3}=36 \mathrm{pC}
$$

(10) (c) Determine V_{3}, the potential across C_{3}.

$$
V_{3}=\frac{Q_{3}}{c_{3}}=\frac{36 \mathrm{pC}}{18 \mathrm{pF}}
$$

