Exam Total

PHYS 2135 Exam I
September 17, 2019
Name: \qquad Section: \qquad

For questions 1-5, select the best answer. For problems 6-9, solutions must begin with an Official Starting Equation, when appropriate. Work must be shown to receive credit. Calculators are not allowed.
(8) \qquad 1. A proton is moving with speed \vec{v}_{0} in a uniform electric field. Which of the four dotted lines best represents the trajectory of the proton?
[A] 1
[B] 2
[C] 3
[D] 4

(8) \qquad 2. The electric potential in a certain region of space is
$V=6 x y^{2}\left(\mathrm{~V} / \mathrm{m}^{4}\right)-4 x^{2}\left(\mathrm{~V} / \mathrm{m}^{3}\right)+62 y\left(\mathrm{~V} / \mathrm{m}^{2}\right)$. The x-component of the electric field at $x=2.0 \mathrm{~m}, \mathrm{y}=1.0 \mathrm{~m}$ is \ldots
[A] $+10 \mathrm{~V} / \mathrm{m}$
[B] $-10 \mathrm{~V} / \mathrm{m}$
[C] -65 V/m
[D] $58 \mathrm{~V} / \mathrm{m}$
(8) \qquad 3. A cube of side L has a vertical electric field of uniform magnitude $3 E$ at its top surface and of magnitude $2 E$ at its bottom surface. What is the charge contained in the cube?
[A] 0
[B] $\varepsilon_{0} E L^{2}$
$[\mathrm{C}]-\varepsilon_{0} \mathrm{EL}^{2}$
[D] $5 \varepsilon_{0} \mathrm{EL}^{2}$.

(8) \qquad 4. An electric dipole is released in a uniform electric field, as illustrated. Which direction will the dipole rotate and what is its potential energy? [The dipole is in the plane of the paper.]
[A] counterclockwise, U is near its minimum
$[B]$ counterclockwise, U is near its maximum
[C] clockwise, U is near its minimum
[D] clockwise, U is near its maximum

(8) \qquad 5 (Free). For those reading ahead, what's the difference between an Ohm and a Coulomb?
[A]

[B] Ask Sherlock Ohms
[C] Only Ohm can resist Coulomb.
[D] Ohm doesn't know how to conduct himself.
6. Two point charges are placed on the x-axis. The first point charge $+Q$ is placed at $x=0$ and the second point charge $+9 Q$ is placed at $x=D$.
(10) (a) Find a location on the x-axis that the net electric field is zero. Express your answer in terms of the given parameters.
(10) (b) A third point charge $+q_{0}$ is located midway between the two point charges, $+Q$ and $+9 Q$. What is the net force on the third charge? Express your answer in unit vector notation.
(20) (c) Find the electric field at point $(0, D)$. If a third point charge $+q_{0}$ is located at $(0, D)$, what is the net force on the third charge? Express your answer in unit vector notation.

7. \quad An arc of radius R and a rod of length R are located as shown. The arc subtends an angle of 120 degrees. Both the arc and the rod have a negative uniform charge per unit length $-\lambda$. Express your answers with R, λ, and constants. If your work involves an integral, you need to perform the integral to get a full credit.

(6) (a) Determine the total charge sum of the arc and the rod.
(12) (b) Determine the electric potential from the arc at the origin. You may assume that $V=0$ at infinity.
(12) (c) Determine the electric potential from the rod at the origin. You may assume that $V=0$ at infinity.
(10) (d) An electron (mass m and charge $-e$) is released from rest at the origin. Determine the maximum velocity of the electron after it is released.
8. An infinitely long insulating cylinder of radius a with uniform charge density ρ lies along the axis of symmetry of an infinitely long conducting cylindrical shell of inner radius a and outer radius b, as illustrated. The electric field outside the conducting cylindrical shell $(r>b)$ is found to be zero.
(15) (a) Determine the electric field inside the insulating cylinder $(0<r<a)$.

(10) (b) Determine the electric field within the conducting cylindrical shell ($a<r<b$).
(10) (c) Express the surface charge density σ_{a} at the inner surface of the conducting shell in terms of variables introduced above.
(5) (d) Express the surface charge density σ_{b} at the outer surface of the conducting shell in terms of variables introduced above.

9. Consider the given circuit. [Provide numerical answers for each part.]

(15) (a) Determine C_{T}, the total equivalent capacitance.
(15) (b) Determine Q_{3}, the charge on C_{3}.
(10) (c) Determine V_{3}, the potential across C_{3}.

