Exam Total

PHYS 2135 Exam I
September 18, 2018
Name: \qquad

For questions 1-5, select the best answer. For problems 6-9, solutions must begin with an Official Starting Equation, when appropriate. Work must be shown to receive credit. Calculators are not allowed.
(8) \qquad 1. A Gaussian sphere of radius R is centered on a positive charge Q. If the radius of the sphere is doubled the net electric flux through the Gaussian surface is ...
[A] doubled
[B] halved
[C] unchanged
[D] reduced by a factor of four
(8) \qquad 2. You are given three charged insulating spheres. Spheres 1 and 2 are found to attract each other. Spheres 2 and 3 are found to repel each other. Which of the following can you conclude?
[A] Spheres 1 and 3 carry charges of equal sign
[B] Spheres 1 and 3 carry charges of opposite sign
[C] All three spheres carry charges of the same sign
[D] Spheres 1 and 3 will repel each other
(8) \qquad
B 3. The figure shows the electric field lines and equipotentials in a certain region of space. Which of the following is true?
[A] $\quad V_{A}>V_{B}$ and $V_{B}=V_{C}$
[B] $\quad V_{B}>V_{A}$ and $V_{B}=V_{C}$
[C] $\quad V_{C}>V_{B}$ and $V_{A}=V_{B}$
[D] $\quad \mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{C}}$
 Electric field line
(8) \qquad 4. The capacitance of a parallel-plate capacitor can be increased ...
[A] by increasing charge on each plate.
[B] by increasing the area of each plate.
[C] by increasing spacing between the plates.
[D] by increasing the potential difference across the plates.
(8) \qquad 5. What do the San Diego Chargers have in common with PHYS 2135 students?
[A] Great Potential
[B] Field Lines
[C] Formulas for Success
[D] More Points
6. There is a positive charge $+63 q_{0}$ at the origin and a negative charge $-125 q_{0}$ located at $(x, y)=(0,4 a)$. Start with an OSE and express your answers in terms of k, q_{0}, m and the given quantities. For vectors, express your answers in unit vector notation.
(15) (a) What is the electric field at $(x, y)=(3 a, 0)$
due to the $+63 q_{0}$ charge?

$$
\begin{aligned}
& \vec{E}=k \frac{q}{r^{2}} \hat{r} \\
& \vec{E}_{63}=\frac{k\left(63 q_{0}\right)}{(3 a)^{2}} \hat{\imath} \\
& \vec{E}_{63}=\frac{7 k q_{0}}{a^{2}} \hat{\imath}
\end{aligned}
$$

(15) (b) What is the electric field at $(x, y)=(3 a, 0)$ due to the $-125 q_{0}$ charge?

$$
\begin{array}{ll}
\vec{E}_{125}=\frac{k\left(-125 q_{0}\right)}{(5 a)^{2}}[\cos \theta \hat{\imath}-\sin \theta \hat{\jmath}] & \sin \theta=\frac{4}{5} \quad \cos \theta=\frac{3}{5} \\
\vec{E}_{125}=\frac{5 k q_{0}}{a^{2}}\left[-\frac{3}{5} \hat{\imath}+\frac{4}{5} \hat{\jmath}\right] \\
\vec{E}_{125}=\frac{k q_{0}}{a^{2}}[-3 \hat{\imath}+4 \hat{\jmath}]
\end{array}
$$

(5) (c) A particle with a negative charge $-2 q_{0}$ and mass m is placed at (3a, 0). What is the net force on this particle?
$\vec{E}_{\text {Tot }}=\vec{E}_{63}+\vec{E}_{125}=\frac{k q_{0}}{a^{2}}[4 \hat{\imath}+4 \hat{\jmath}]$
$\vec{F}=\left(-2 q_{0}\right) \vec{E}_{\text {Tot }}=\frac{-8 k q_{0}^{2}}{a^{2}}[\hat{\imath}+\hat{\jmath}]$
7. An insulating ring of radius a has a net charge $+Q$ uniformly distributed along the ring. The ring lies in the $x-z$ plane with the origin of the coordinate system at the center of the ring. The y-axis is perpendicular to the ring and is on a line through the center of the ring.
(10) (a) Determine the linear
 charge density λ on the ring.

$$
\lambda=\frac{Q}{2 \pi a}
$$

(15) (b) Set up and evaluate an integral to determine the electric potential as a function of y along the y-axis.
$V=k \int_{0}^{2 \pi} \frac{d q}{\sqrt{a^{2}+y^{2}}} \quad d q=\lambda a d \theta$
$V=k \int_{0}^{2 \pi} \frac{\lambda a d \theta}{\sqrt{a^{2}+y^{2}}}=\frac{k \lambda a}{\sqrt{a^{2}+y^{2}}} \int_{0}^{2 \pi} d \theta=\frac{2 \pi k \lambda a}{\sqrt{a^{2}+y^{2}}}$
$V=\frac{k Q}{\sqrt{a^{2}+y^{2}}}$
(15) (c) A particle of mass m and charge $-q_{0}$ is placed at $y=2 a$ and released from rest. Determine the speed of the particle as it passes through the center of the ring.

$$
\begin{array}{lll}
E_{f}-E_{i}=W_{o t h e r}=0 & U=q V=-q_{0} V & \\
U_{f}+K_{f}=U_{i}+k_{i} & U_{f}=-\frac{k q_{0} Q}{a} & U_{i}=-\frac{k q_{0} Q}{a \sqrt{5}} \\
-\frac{k q_{0} Q}{a}+\frac{1}{2} m v_{f}^{2}=-\frac{k q_{0} Q}{a \sqrt{5}} & \\
v_{f}=\sqrt{\frac{2}{m}\left(\frac{k q_{0} Q}{a}\right)\left[1-\frac{1}{\sqrt{5}}\right]} &
\end{array}
$$

8. A solid insulating plastic sphere of radius a carries a total net negative charge $-Q$ uniformly distributed throughout its interior. The insulating sphere is coated with a conducting metallic layer in the form of a spherical shell with inner radius a and outer radius b. The conducting layer carries a net charge of $+Q$.
(5) (a) Compute the volume charge density ρ in the plastic sphere in terms of variables introduced above.

$$
\rho=\frac{q}{V}=\frac{-Q}{\frac{4}{3} \pi a^{3}}=\frac{-3 Q}{4 \pi a^{3}}
$$

(10) (b) Apply Gauss's law to find the magnitude of the electric field $E(r)$ in the region $r<a$.

$$
\begin{array}{lll}
\oint \vec{E} \cdot d \vec{A}=\frac{q_{e n c}}{\epsilon_{0}} & q_{e n c}=\rho\left(\frac{4}{3} \pi r^{3}\right) & \text { or } \quad q_{e n c}=-Q\left(\frac{\frac{4}{3} \pi r^{3}}{\frac{3}{3} \pi a^{3}}\right)=-Q\left(\frac{r^{3}}{a^{3}}\right) \\
E\left(4 \pi r^{2}\right)=\frac{\rho\left(\frac{4}{3} \pi r^{3}\right)}{\epsilon_{0}} & \text { or } & E\left(4 \pi r^{2}\right)=\frac{-Q\left(\frac{r^{3}}{a^{3}}\right)}{\epsilon_{0}} \\
E=\frac{\rho r}{3 \epsilon_{0}} & \text { or } & |E|=\frac{Q r}{4 \pi \epsilon_{0} a^{3}}
\end{array}
$$

(10) (c) Find the electric field at points in the region $b>r>a$. Justify your answer.
$E=0 \quad$ The electric field is zero inside the conductor.
(10) (d) Find the charge density on the inner surface of the spherical shell.
$\oint \vec{E} \cdot d \vec{A}=\frac{q_{\text {enc }}}{\epsilon_{0}}=0$
$q_{e n c}=0=-Q+Q_{a}$
$Q_{a}=Q$
$\sigma_{a}=\frac{Q_{a}}{4 \pi a^{2}}=\frac{Q}{4 \pi a^{2}}$
(5) (e) Find the electric field at points in the region $r>b$.

$$
\oint \vec{E} \cdot d \vec{A}=\frac{q_{e n c}}{\epsilon_{0}}=\frac{-Q+Q}{\epsilon_{0}}=0
$$

$E=0$
9. Consider the given circuit.
(10) (a) Calculate the equivalent capacitance of the entire circuit.
(Note: $1 \mathrm{pF}=10^{-12} \mathrm{~F}$)

$$
\begin{gathered}
C_{12}=5 \mathrm{pF}+5 \mathrm{pF}=10 \mathrm{pF} \\
C_{56}=1 \mathrm{pF}+4 \mathrm{pF}=5 \mathrm{pF} \\
C_{e q}=\left(\frac{1}{10 \mathrm{pF}}+\frac{1}{10 \mathrm{pF}}+\frac{1}{10 \mathrm{pF}}+\frac{1}{5 \mathrm{pF}}\right)^{-1} \\
C_{e q}=2 \mathrm{pF}
\end{gathered}
$$

(10) (b) Find the charge Q_{3} on capacitor C_{3}

$$
Q_{3}=Q_{e q}=C_{e q} V_{0}=(2 \mathrm{pF})(100 \mathrm{~V})=200 \mathrm{pC}
$$

(10) (c) Find the voltage V_{1} across capacitor C_{1}.

$$
V_{12}=\frac{Q_{12}}{C_{12}}=\frac{Q_{e q}}{C_{12}}=\frac{200 \mathrm{pC}}{10 \mathrm{pF}}=20 \mathrm{~V}
$$

(10) (d) Capacitor C_{5} is a parallel plate capacitor, with the dimensions indicated.

Determine the spacing d between the plates of this capacitor (a numerical answer is required.)

$$
\begin{aligned}
& C_{5}=\frac{\epsilon_{0} A}{d}=\frac{\epsilon_{0} L^{2}}{d} \\
& d= \frac{\epsilon_{0} L^{2}}{C_{5}}=\frac{\left(8.85 \times 10^{-12} \frac{\mathrm{c}^{2}}{\mathrm{Nm}^{2}}\right)\left(10^{-2} \mathrm{~m}\right)^{2}}{10^{-12} \mathrm{~F}} \\
& d=8.85 \times 10^{-4} \mathrm{~m}
\end{aligned}
$$

