Exam Total

PHYS 2135 Exam I
September 18, 2018
Name: \qquad

For questions $1-5$, select the best answer. For problems $6-9$, solutions must begin with an Official Starting Equation, when appropriate. Work must be shown to receive credit. Calculators are not allowed.
(8) \qquad 1. A Gaussian sphere of radius R is centered on a positive charge Q. If the radius of the sphere is doubled the net electric flux through the Gaussian surface is ...
[A] doubled
[B] halved
[C] unchanged
[D] reduced by a factor of four
(8) \qquad 2. You are given three charged insulating spheres. Spheres 1 and 2 are found to attract each other. Spheres 2 and 3 are found to repel each other. Which of the following can you conclude?
[A] Spheres 1 and 3 carry charges of equal sign
[B] Spheres 1 and 3 carry charges of opposite sign
[C] All three spheres carry charges of the same sign
[D] Spheres 1 and 3 will repel each other
(8) \qquad 3. The figure shows the electric field lines and equipotentials in a certain region of space. Which of the following is true?
[A] $\quad V_{A}>V_{B}$ and $V_{B}=V_{C}$
[B] $\quad V_{B}>V_{A}$ and $V_{B}=V_{C}$
[C] $V_{C}>V_{B}$ and $V_{A}=V_{B}$
[D] $\quad V_{A}=V_{B}=V_{C}$
 Electric field line
(8) \qquad 4. The capacitance of a parallel-plate capacitor can be increased ...
[A] by increasing charge on each plate.
[B] by increasing the area of each plate.
[C] by increasing spacing between the plates.
[D] by increasing the potential difference across the plates.
(8) \qquad 5. What do the San Diego Chargers have in common with PHYS 2135 students?
[A] Great Potential
[B] Field Lines
[C] Formulas for Success
[D] More Points
6. There is a positive charge $+63 q_{0}$ at the origin and a negative charge $-125 q_{0}$ located at $(x, y)=(0,4 a)$. Start with an OSE and express your answers in terms of k, q_{0}, m and the given quantities. For vectors, express your answers in unit vector notation.
(15) (a) What is the electric field at $(x, y)=(3 a, 0)$ due to the $+63 q_{0}$ charge?

(15) (b) What is the electric field at $(x, y)=(3 a, 0)$ due to the $-125 q_{0}$ charge?
(5) (c) A particle with a negative charge $-2 q_{0}$ and mass m is placed at (3a, 0). What is the net force on this particle?

7. An insulating ring of radius a has a net charge $+Q$ uniformly distributed along the ring. The ring lies in the $x-z$ plane with the origin of the coordinate system at the center of the ring. The y-axis is perpendicular to the ring and is on a line through the center of the ring.
(10) (a) Determine the linear
 charge density λ on the ring.
(15) (b) Set up and evaluate an integral to determine the electric potential as a function of y along the y-axis.
(15) (c) A particle of mass m and charge $-q_{0}$ is placed at $y=2 a$ and released from rest. Determine the speed of the particle as it passes through the center of the ring.
8. A solid insulating plastic sphere of radius a carries a total net negative charge Q uniformly distributed throughout its interior. The insulating sphere is coated with a conducting metallic layer in the form of a spherical shell with inner radius a and outer radius b. The conducting layer carries a net charge of $+Q$.
(5) (a) Compute the volume charge density ρ in the plastic sphere in terms of variables introduced above.
(b) Apply Gauss's law to find the magnitude of the electric field $E(r)$ in the region $r<a$.

(10) (c) Find the electric field at points in the region $b>r>a$. Justify your answer.
(10) (d) Find the charge density on the inner surface of the spherical shell.
(5) (e) Find the electric field at points in the region $r>b$.

9. Consider the given circuit.
(10) (a) Calculate the $\begin{array}{cc}C_{3} & C_{4} \\ 10 \mathrm{pF} & 10 \mathrm{pF}\end{array}$ equivalent capacitance of the entire circuit. (Note: $1 \mathrm{pF}=10^{-12} \mathrm{~F}$)

(10) (b) Find the charge Q_{3} on capacitor C_{3}.
(10) (c) Find the voltage V_{1} across capacitor C_{1}.
(10) (d) Capacitor C_{5} is a parallel plate capacitor, with the dimensions indicated. Determine the spacing d between the plates of this capacitor (a numerical answer is required.)

