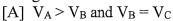
## **Exam Total**

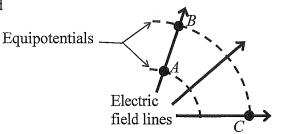
Physics 2135 Exam 1


Sept. 19, 2017

/200

Rec. Sect:

Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. For questions 6-9, solutions must begin with a correct OSE. You must show work to receive full credit for your answers. Calculators are NOT allowed.


1. The figure shows the electric field lines and equipotentials in a certain region of space. Which of the following is true?



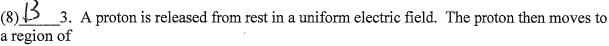
[B] 
$$V_B > V_A$$
 and  $V_B = V_C$ 

[C] 
$$V_C > V_B$$
 and  $V_A = V_B$ 

[D]  $V_A = V_B = V_C$ 



2. The figure shows an electric dipole with its dipole moment oriented perpendicular to a uniform electric field. For this orientation the torque on the dipole is Ε


and the potential energy of the dipole is

[A] 0, minimum

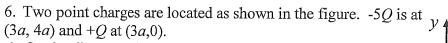
[B] 0, maximum

[C] minimum, 0

[D] maximum, 0.



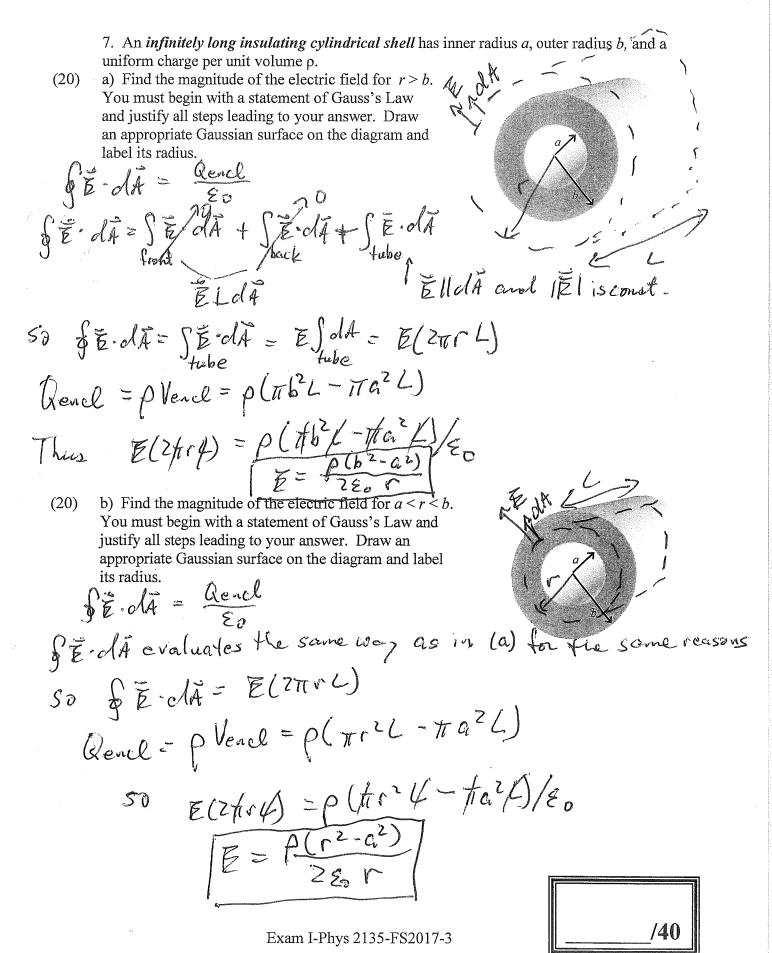
- [A] higher electric potential
- [B] lower electric potential
- [C] the same electric potential
- [D] can't tell; sometimes higher, sometimes lower electric potential
- 4. The potential in some region of space is given by  $V = Axy^2 By$  where A and B are positive constants. The x-component of the electric field is:

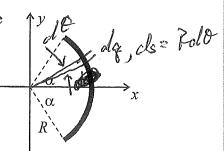

[A] 
$$Ay^2$$

[B] 
$$2Axy - B$$

$$[C] -Ay^2$$

$$[D] -2Axy + B$$


- (8) 4n7 5. Rumor has it that a California inmate was able to pass electricity through salsa (that's right salsa) to break through his prison window bars and escape.
  - [A] I believe this to be true.
  - [B] No way, this is a scam to deprive prisoners of tasty snacks.
  - [C] I stopped watching Myth Busters years ago.
  - [D] Just give me my points and get on with it.




- (10) a) On the diagram, draw the electric field vectors at the origin due to each of the two point charges.
- (20) b) Using the coordinate system given, calculate the electric field at the origin due to *both* charges. Express your answer in unit vector notation.

$$\frac{1}{E} = \frac{kQ}{5a^{2}} \cos C + \frac{kQ}{5a^{2}} \sin O \int \frac{3kQ}{5a^{2}} \cos C + \frac{4kQ}{7} \int \frac{4kQ}{7} \int \frac{4kQ}{7} \int \frac{1}{7} \sin C + \frac{4kQ}{7} \int \frac{1}{7} \sin C$$

(10) c) If a positive charge q is now placed at the origin, what is the force on charge q due to the two point charges +Q and -5Q?





/40

- 8. An insulating rod is bent in a circular arc of radius R centered at the origin that subtends an angle of  $2\alpha$  (see diagram). The rod is given a total charge of +Q distributed uniformly along its length.
- (10) a) Determine the charge per unit length,  $\lambda$ , for the rod.

(20) b) Calculate the electric potential at the origin.

$$dV = \frac{k dq}{R} = \frac{k \wedge ds}{R} = \frac{k \wedge k \wedge d\theta}{R}$$

$$V = \int dV = \frac{k \wedge d\theta}{k \wedge d\theta} = 2 \times k \wedge \frac{k \wedge d\theta}{R}$$

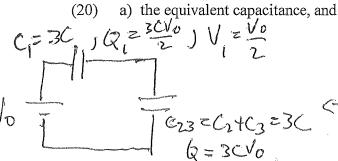
$$V = 2 \times k \wedge \frac{k \wedge d\theta}{R} = \frac{k \wedge k \wedge d\theta}{R} = \frac{k \wedge k \wedge d\theta}{R} = \frac{k \wedge k \wedge d\theta}{R}$$

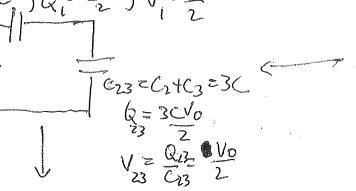
(10) c) A proton is now placed at the origin and released from rest. Calculate the speed of the proton when it reaches a point infinitely far from the arc.

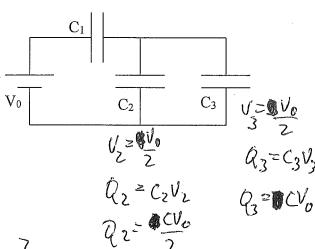
$$E_{f} = E_{i} = \text{Wother}$$

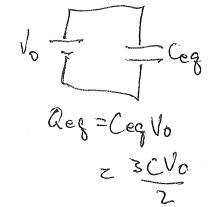
$$E_{f} = E_{i} \Rightarrow \text{KetOf} = \text{Ki+Oi}$$

$$\text{Ce} = \text{Vi-Op}$$


$$\text{Imv}_{f}^{2} = \text{g}(\text{Vi-Vp})$$


$$\text{Imv}_{f}^{2} = \text{(+e)}(\text{KG} - \text{O}) \approx \text{keQ}$$


$$\text{Ve} = \text{ViR}$$


$$\text{Exam I-Phys 2135-FS2017-4}$$

9. For the capacitor system shown,  $C_1 = 3C$ ,  $C_2 = C$ , and  $C_3 = 2C$ . Find









$$\frac{1}{\cos^2 3c} = \frac{1}{3c} + \frac{1}{3c} = \frac{2}{3c}$$
 $\frac{1}{\cos^2 3c} = \frac{3c}{3c}$ 

(20)b) the charge on each capacitor. Express your answers in terms of C and V<sub>0</sub>.

$$Q_1 = \frac{3CV_0}{2}$$

$$Q_2 = \frac{CV_0}{2}$$