Determining electric forces and fields due to charge distributions is not learned in a single lesson.

\[\vec{F} = \int k \frac{dq \cdot \vec{r}}{r^2} \]

\[\vec{E} = \int k \frac{dq}{r^2} \]

Continuous Charge Distributions

\[\vec{F} = \int k \frac{dq \cdot \vec{r}}{r^2} \]

\[\vec{E} = \int k \frac{dq}{r^2} \]

- Define a coordinate system.
- Select random position along charge distribution for \(dq \).
 - \(dx \) (or \(R \phi \)) is differential length along charge distribution.
 - \(dq = \lambda dx \) (or \(dq = \lambda R \phi \))
 - \(\lambda = \frac{Q}{L} \) (or \(\lambda = \frac{Q}{R \phi} \), \(\Delta \theta \) in radians)

Continuous Charge Distributions

- Define a coordinate system.
- Select random position for \(dq \).
- \(\vec{r} \) goes from \(dq \) to position where \(\vec{E} \) or \(\vec{F} \) is to be determined. (If finding force on distribution, \(\vec{r} \) goes from other charge to \(dq \).)
 - \(r = \sqrt{r_x^2 + r_y^2} \)
 - \(\vec{r} = \frac{r_x}{r} \hat{\hat{x}} + \frac{r_y}{r} \hat{\hat{y}} \)

Continuous Charge Distributions

- Define a coordinate system.
- Select random position for \(dq \).
- \(\vec{r} \) goes from \(dq \) to position where \(\vec{E} \) or \(\vec{F} \) is to be determined. (If finding force on distribution, \(\vec{r} \) goes from other charge to \(dq \).)
- Integrate along charge distribution
 - Limits are the endpoints of the charge distribution.

\[dq = \lambda dx \]

\[dq = \frac{Q}{L} dx \]
Electric Dipole

- Force and torque in a uniform electric field.

\[\vec{F} = q \vec{E} \]

\[\vec{r} = \vec{p} \times \vec{E} \]

\[\vec{r}_r = 0 \]

\[\vec{F}_r = 2 \left(\frac{\vec{d}}{2} \times q \vec{E} \right) \]
Electric Dipole

- Force and torque in a uniform electric field.

\[\vec{F} = q \vec{E} \]

\[\vec{\tau} = \vec{r} \times \vec{F} \]

\[\vec{\tau}_T = 2 \left(\frac{d}{2} \times q \vec{E} \right) \]

\[\vec{\tau}_T = \vec{p} \times \vec{E} \]

\[-\Delta U = W = \int \vec{F} \cdot d\vec{s} \]

\[-\Delta U = 2 \left[qE \times \left(\frac{d}{2} \cos \theta - \frac{d}{2} \cos \theta_0 \right) \right] = \Delta (\vec{p} \cdot \vec{E}) \]

Electric Field Vectors

Arrows show direction and magnitude of field.

Electric Field Lines

Arrows show direction of field. Density of lines show magnitude of field.
Electric Field Lines

Arrows show direction of field.
Density of lines show magnitude of field.

- Lines originate at positive charges.
- Lines terminate at negative charges.
- Lines may originate or terminate at infinity.
- Lines do not cross.
- Number of lines is proportional to amount of charge.
- Near charges, ignore other charges.
- Far from charges, consider total charge.
- Smoothly join near and far.

Example: Pair of point charges

Example: Three point charges

Example: Large charged plates
Example: Large charged plates

Electric Flux
- Field line density is proportional to electric field.
- Count field lines to determine strength.

Electric Flux
“Counting field lines” through a surface

\[\Phi_E = \oint \vec{E} \cdot d\vec{A} \]

Area vector
- Magnitude of area
- Direction normal (perpendicular) to surface
Example: Flux through a rectangular surface due to a uniform field.

\[\Phi_E = \int \vec{E} \cdot d\vec{A} = \int E(dA) \cos \theta = EA \cos \theta \]

Gauss’s Law

\[\Phi_E = \oint \vec{E} \cdot d\vec{A} = \frac{q_{\text{enclosed}}}{\varepsilon_0} \]

Closed surface
Going out is defined as positive

Gauss’s Law

\[\oint \vec{E} \cdot d\vec{A} = \frac{q_{\text{enclosed}}}{\varepsilon_0} \]

Use in reverse to determine field. It is possible to factor \(\vec{E} \) out of the integral.

Example: Electric field due to point charge

Three solvable symmetries
- Spherical - today’s lecture
- Cylindrical
- Planar - next lecture

\[\oint \vec{E} \cdot d\vec{A} \]

Use in reverse to determine field. It is possible to factor \(\vec{E} \) out of the integral.

\(\vec{E} \) can factored out of the integral only if \(\vec{E} \) is parallel to \(d\vec{A} \) and constant in magnitude everywhere along the surface.
Example: Electric field due to point charge

Create a spherical Gaussian surface centered on the point charge.

\[\vec{E} \cdot d\vec{A} \text{ is constant everywhere along the sphere.} \]

\[\int \vec{E} \cdot d\vec{A} = \frac{q_{\text{enc}}}{\varepsilon_0} \]

\[E \int dA = \frac{Q}{\varepsilon_0} \]

Example: Electric field due to point charge

\[\int \vec{E} \cdot d\vec{A} = \frac{q_{\text{enc}}}{\varepsilon_0} \]

\[E \int dA = \frac{Q}{\varepsilon_0} \]

Example: Electric field due to a uniform surface charge on a sphere.

\[\oint \vec{E} \cdot d\vec{A} = \frac{q_{\text{enc}}}{\varepsilon_0} \]

\[E(4\pi r^2) = \frac{Q}{\varepsilon_0} \]

\[E = \frac{Q}{4\pi \varepsilon_0 r^2} \]

Example: Electric field due to a uniform surface charge, \(\sigma \), on a sphere.

\[\vec{E} = \frac{Q}{4\pi \varepsilon_0 r^2} \hat{r} \]

\[\vec{E} = k \frac{Q}{r^2} \hat{r} \]

\[\frac{1}{4\pi \varepsilon_0} = k \]

Inside:
Example: Electric field due to a uniform surface charge, \(\sigma \), on a sphere.

Outside:

Example: Electric field due to a uniform volume charge, \(\rho \), in a spherical solid.

Outside:

Example: Electric field due to a uniform volume charge, \(\rho \), in a spherical solid.

Inside: