Official Starting Equations

PHYS 2135, Engineering Physics II

From PHYS 1135:
$x=x_{0}+v_{0 x} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} \quad v_{x}=v_{0 x}+a_{x} \Delta t \quad v_{x}^{2}=v_{0 x}^{2}+2 a_{x}\left(x-x_{0}\right) \quad \sum \vec{F}=m \vec{a}$
$F_{r}=-\frac{m v_{t}^{2}}{r} \quad P=\frac{F}{A} \quad \vec{p}=m \vec{v} \quad P=\frac{d W}{d t} \quad W=\int \vec{F} \cdot d \vec{s}$
$K=\frac{1}{2} m v^{2} \quad U_{f}-U_{i}=-W_{\text {conservative }} \quad E=K+U \quad E_{f}-E_{i}=\left(W_{\text {other }}\right)_{i \rightarrow f} \quad E=P_{\text {ave }} t$

Constants:

$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad m_{\text {electron }}=9.11 \times 10^{-31} \mathrm{~kg}$
$m_{\text {proton }}=1.67 \times 10^{-27} \mathrm{~kg}$
$e=1.6 \times 10^{-19} \mathrm{C}$
$c=3.0 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \quad k=\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \quad \epsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}} \quad \mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{\mathrm{A}}$

Electric Force, Field, Potential and Potential Energy:

$\vec{F}=k \frac{q_{1} q_{2}}{r_{12}^{2}} \hat{r}_{12}$
$\vec{E}=k \frac{q}{r^{2}} \hat{r}$
$\vec{F}=q \vec{E}$
$\Delta V=-\int_{i}^{f} \vec{E} \cdot d \vec{s}$
$U=k \frac{q_{1} q_{2}}{r_{12}}$
$V=k \frac{q}{r}$
$\Delta U=q \Delta V$
$E_{x}=-\frac{\partial V}{\partial x}$
$\vec{p}=q \vec{d}($ from - to +$)$
$\vec{\tau}=\vec{p} \times \vec{E}$
$U_{\text {dipole }}=-\vec{p} \cdot \vec{E}$
$\Phi_{E}=\int_{S} \vec{E} \cdot d \vec{A}$
$\oint_{S} \vec{E} \cdot d \vec{A}=\frac{q_{\text {enclosed }}}{\epsilon_{0}}$
$\lambda \equiv \frac{\text { charge }}{\text { length }}$
$\sigma \equiv \frac{\text { charge }}{\text { area }} \quad \rho \equiv \frac{\text { charge }}{\text { volume }}$

Circuits:

$$
\begin{array}{llll}
C=\frac{Q}{V} & \frac{1}{C_{T}}=\sum \frac{1}{c_{i}} & C_{T}=\sum C_{i} & C_{0}=\frac{\epsilon_{0} A}{d} \\
U=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} Q V & I=\frac{d q}{d t} & J=\frac{I}{A} & \vec{J}=n q \vec{v}_{d} \\
\vec{J}=\sigma \vec{E} & V=I R & R=\rho \frac{L}{A} & \sigma=\frac{1}{\rho} \\
\sum I=0 & \sum \Delta V=0 & \frac{1}{R_{T}}=\sum \frac{1}{R_{i}} & R_{T}=\sum R_{i} \\
Q(t)=Q_{\text {final }}\left[1-e^{-t / \tau}\right] & Q(t)=Q_{0} e^{-t / \tau} & \tau=R C &
\end{array}
$$

Magnetic Force, Field and Inductance:

$\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})$
$\vec{F}=I \vec{L} \times \vec{B}$
$\Phi_{B}=\int \vec{B} \cdot d \vec{A}$
$\oint \vec{B} \cdot d \vec{A}=0$
$\oint \vec{B} \cdot d \vec{s}=\mu_{0} I_{\text {enclosed }}$
$\vec{\mu}=N I \vec{A}$
$\vec{\tau}=\vec{\mu} \times \vec{B}$
$U_{\text {dipole }}=-\vec{\mu} \cdot \vec{B}$
$\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{q \vec{v} \times \hat{r}}{r^{2}}$
$d \vec{B}=\frac{\mu_{0} I}{4 \pi} \frac{d \vec{s} \times \hat{r}}{r^{2}}$
$\mathcal{E}=-N \frac{d \Phi_{B}}{d t}$
$\oint \vec{E} \cdot d \vec{s}=-\frac{d \phi_{B}}{d t}$
$\oint \vec{B} \cdot d \vec{s}=\mu_{0} I_{\text {enclosed }}+\mu_{0} \epsilon_{0} \frac{d \phi_{E}}{d t}$
$B=\frac{\mu_{0} I}{2 \pi r}$
$B=\mu_{0} n I$

Electromagnetic Waves:

$I=\frac{P}{A}$
$u=\frac{1}{2}\left(\epsilon_{0} E^{2}+\frac{B^{2}}{\mu_{0}}\right)=\epsilon_{0} E^{2}=\frac{B^{2}}{\mu_{0}}$
$\langle u\rangle=\frac{1}{4}\left(\epsilon_{0} E_{\text {max }}^{2}+\frac{B_{\text {max }}^{2}}{\mu_{0}}\right)=\frac{1}{2} \epsilon_{0} E_{\text {max }}^{2}=\frac{B_{\text {max }}^{2}}{2 \mu_{0}}$
$\frac{E}{B}=c=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}$
$\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}$
$I=\langle S\rangle=c\langle u\rangle$
$\left\langle P_{\text {rad }}\right\rangle=\frac{I}{c}$ or $\frac{2 I}{c}$
$k=\frac{2 \pi}{\lambda}$
$\omega=2 \pi f$
$T=\frac{1}{f}$
$v=f \lambda=\frac{\omega}{k}=\frac{c}{n}$

Optics:

$I=I_{\text {max }} \cos ^{2} \phi$
$\theta_{r}=\theta_{i}$
$n=\frac{c}{v}=\frac{\lambda_{0}}{\lambda_{n}}$
$n_{r} \sin \theta_{r}=n_{i} \sin \theta_{i}$
$\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}$
$m=\frac{y^{\prime}}{y}=-\frac{s^{\prime}}{s}$
$\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$f=\frac{R}{2}$
$\frac{n_{a}}{s}+\frac{n_{b}}{s^{\prime}}=\frac{n_{b}-n_{a}}{R}$
$m=\frac{y^{\prime}}{y}=-\frac{n_{a} s^{\prime}}{n_{b} s}$
$\Delta L=m \lambda$
$\Delta L=\left(m+\frac{1}{2}\right) \lambda$
$\Delta L=d \sin \theta$
$\phi=2 \pi\left(\frac{\Delta L}{\lambda}\right)$
$I=I_{0} \cos ^{2} \frac{\phi}{2}$
$R=\frac{\lambda}{\Delta \lambda}=N m$
$m \lambda=a \sin \theta$
$\beta=\frac{2 \pi}{\lambda} a \sin \theta$
$I=I_{0}\left[\frac{\sin (\beta / 2)}{\beta / 2}\right]^{2}$

Integral:
$\int \frac{d u}{\left(u^{2}+a^{2}\right)^{3 / 2}}=\frac{u}{a^{2} \sqrt{u^{2}+a^{2}}}+c$

