SIMPLE HARMONIC MOTION

Learning Objectives
After you complete the homework associated with this lecture, you should be able to:

- Use the formula for the position of a simple harmonic oscillator (SHO) to analyze its position, velocity and acceleration at any time;
- Use system information to determine the values of parameters for to describe simple harmonic motion;
- Describe the cyclic transformations of kinetic and potential energies, including their mathematical property of being 90° out of phase with respect to one another.

Consider a mass m on a frictionless surface that is connected to a spring with spring constant k.

F_{spring} is opposite to the displacement \vec{D}

F_{spring} is a linear restoring force

$\Rightarrow \quad F_x = -kx$

- F_x is negative if x is positive (extension)
- F_x is positive if x is negative (compression)

Using Newton’s Second Law for the spring

$ma_x = F_x$

$m \frac{d^2x}{dt^2} = -kx$

$\frac{d^2x}{dt^2} = -\left(\frac{k}{m}\right)x$

This equation is in the form of: $\frac{d^2x}{dt^2} = -\omega^2x$

where $\omega = [k/m]^{1/2}$ is the angular frequency.
Equation for SHO: \[\frac{d^2x}{dt^2} = -\omega^2 x \]

The general solution to this equation is known:
\[x(t) = A \cos(\omega t + \phi) \]

- \(A \) and \(\phi \) are the two “constants of integration” that arise from the solution of a second-order differential equation.
- They are determined by the initial conditions imposed on the motion \(x(t) \)

Amplitude \(A \) of Simple Harmonic Oscillator

For an SHO
\[x(t) = A \cos(\omega t + \phi) \]

- Because the range of cosine is \([-1, +1]\]
 \(A \) = the amplitude of the motion of \(x(t) \)
 \[\Rightarrow |x(t)| \leq A \]
 \[\Rightarrow x_{\text{max}} = +A \quad \& \quad x_{\text{min}} = -A \]

Phase Constant \(\phi \) Set by Initial Condition

How do we describe \(x(t) = A \cos(\omega t + \phi) \) motions that have different starting points \(x_0 \equiv x(t=0) = x(0) \)?

Amplitude and Force in SHO

<table>
<thead>
<tr>
<th>Case 1 at (t=0)</th>
<th>Case 2 at (t=0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(x_0 = x(0))</td>
<td>(x_0 = x(t=0))</td>
</tr>
<tr>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>(x_{\text{max}} = +A)</td>
<td>(x_{\text{min}} = -A)</td>
</tr>
<tr>
<td>(x_{\text{max}} = +A)</td>
<td>(x_{\text{min}} = -A)</td>
</tr>
</tbody>
</table>

- \(x(t = 0) = A \cos (0 + \phi) = A \cos(\phi) \)
 \[\Rightarrow \cos(\phi) = x(0)/A \]
 \[\Rightarrow \text{phase constant } \phi \text{ determined by initial value } x_0 \equiv x(t=0) \]
x(t) = A \cos(\omega t + \phi)

Initial condition: x(0) = A \cos(\phi)

For example:

Case 1: mass released at x = -A at t = 0,
\[
\cos(\phi_1) = x(0)/A = -A/A = -1 \quad \Rightarrow \quad \phi_1 = \pi
\]

Case 2: mass released at x = +A at t = 0,
\[
\cos(\phi_2) = x(0)/A = +A/A = +1 \quad \Rightarrow \quad \phi_2 = 0
\]

Why Is \(\omega \) an “Angular Frequency”?

- How long does it take for a complete cycle?
 \[
x(0) \rightarrow +A \rightarrow -A \rightarrow 0 \rightarrow +A
\]
 Ans: Time \(T \) (the period) for \(x(t) = A \cos(\omega t + \phi) \) to go through one cycle

 \[
 \Delta(\omega t + \phi) = \Delta(\omega t) = \omega(\Delta t)_{\text{cycle}} = \omega T = 2\pi
 \]

 \(\omega = 2\pi / T = 2\pi \text{ radians per time period} \)

 (an angular frequency!)

 Tells how “fast” \(\cos(\omega t + \phi) \) goes through a cycle.

Effects of Mass and Amplitude on Period

\[
\omega T = 2\pi
\]

\[
T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{k/m}} = \frac{2\pi}{\sqrt{\frac{m}{k}}}
\]

As \(m \) increases, \(T \) increases

But amplitude \(A \) does not appear \(\rightarrow \) \(A \) does not effect \(T \)!!

DEMO: Vertical and horizontal springs showing effect of \(m \) and \(A \)

Hanging Weight on Spring

\[
m \frac{d^2s}{dt^2} = F_{\text{spring},s} + F_{\text{grav},s} = -ks + mg
\]

\[
\frac{d^2s}{dt^2} = -\left(\frac{k}{m}\right)\left(\frac{s - mg}{k}\right)
\]

change of variables: \(x = s - mg/k \rightarrow dx = ds \)

also \(\omega^2 = \frac{k}{m} = \frac{d^2x}{dt^2} = -\omega^2 x \) = same SHO freq

SHO oscillations about new equilibrium position of \(x_{eq} = 0 \) with ALL grav effects already accounted for.
Velocity of Motion

- $v_x(t) = \frac{dx}{dt} = \frac{d[A \cos(\omega t + \phi)]}{dt}$

 \[v_x(t) = -A \sin(\omega t + \phi) \]

- $x = \pm A$ at time t_m such that $\cos(\omega t_m + \phi) = \pm 1$

 \[(\omega t_m + \phi) = 0 \text{ or } \pi \]

\[v_x(t_m) = -\omega A \sin(0 \text{ or } \pi) = 0 \]

\Rightarrow the mass stops and “turns around” when it reaches its maximum displacement

Velocity in SHO

- $v_x(t) = -\omega A \sin(\omega t + \phi)$

- When is the speed $|v_x|$ a maximum?

 \[| -\omega A \sin(\omega t + \phi) | = \text{ maximum} \]

\[|\sin(\omega t + \phi)| = \text{ maximum} = 1 \]

\[|\cos(\omega t + \phi)| = 0 \Rightarrow x = 0 \]

\[\Rightarrow \text{ max speed} = \omega A \text{ occurs at equilib } x = 0 \]

Sinusoidal Energies in Harmonic Motion

\[E_{\text{total}} = K(t) + U(t) = \text{ independent of time} \]

\[K(t) = \frac{1}{2} m v^2(t) = \frac{1}{2} m [-\omega A \sin(\omega t + \phi)]^2 \]

\[= (\frac{1}{2} m \omega^2 A^2) \sin^2(\omega t + \phi) = K_{\text{max}} \sin^2(\omega t + \phi) \]

where $K_{\text{max}} = \frac{1}{2} m (v_{\text{max}})^2 = \frac{1}{2} m (\omega A)^2$

\[U(t) = \frac{1}{2} k x^2(t) = \frac{1}{2} k [A \cos(\omega t + \phi)]^2 \]

\[= (\frac{1}{2} k A^2) \cos^2(\omega t + \phi) = U_{\text{max}} \cos^2(\omega t + \phi) \]

where $U_{\text{max}} = \frac{1}{2} k (x_{\text{max}})^2 = \frac{1}{2} k A^2$
Interplay of Kinetic and Potential Energies

\[E = K_{\text{max}} \sin^2(\omega t + \phi) + U_{\text{max}} \cos^2(\omega t + \phi) \]

\(K(t) \) and \(U(t) \) are both sinusoidal functions of time, but are \(\frac{1}{2} \pi \) radians (90°) out of phase.

\[\Rightarrow \quad \text{When } K \text{ is maximum, } U \text{ is minimum} \]

\[\Rightarrow \quad \text{When } K \text{ is minimum, } U \text{ is maximum} \]

\[E = K_{\text{max}} + U_{\text{min}} = K_{\text{min}} + U_{\text{max}} \]

\(K_{\text{min}} = U_{\text{min}} = 0 \), BUT they occur at different times!

Example: A block of mass \(M \) is attached to a spring. It executes simple harmonic motion of amplitude \(A \). At what displacement(s) \(X \) from equilibrium does its kinetic energy equal twice its potential energy?

\(\Rightarrow \quad K(X) = 2U(X) \)

We can solve this "elegantly" using our Energy Toolbox:

\[E(X) = K(X) + U(X) = E_{\text{tot}} = \text{always constant} \]

\[= K(A) + U(A) = 0 + \frac{1}{2} k A^2 = \frac{1}{2} k A^2 \]

\[2U(X) + U(X) = \frac{1}{2} k A^2 \]

\[3 \left[\frac{1}{2} k X^2 \right] = \frac{1}{2} k A^2 \quad \Rightarrow \quad X = \pm \sqrt{\frac{1}{3}} A \]