WORK OF THE PHYSICS KIND

Learning Objectives
After you complete the homework associated with this lecture, you should be able to:

• Mathematically define kinetic energy.
• Calculate the dot product of two vectors.
• Define work in the physics sense, and explain how force and incremental displacements contribute to it.
• State the relationship between the change in an object’s kinetic energy and the work done on it.
• Use the Work-KE theorem to predict how an object’s speed changes when forces act on it over its path of motion.

KINETIC ENERGY

• A useful concept in the analysis of motion is Kinetic Energy (KE): \[K = \frac{1}{2} m v^2 \]
• The greater an object’s speed, the greater its KE.

CAUTION:
• By its definition, Kinetic Energy is **NOT** a vector! There is NO such thing as \(K_x \) or \(K_y \).
 You have been hereby WARNED.

FORCE & CHANGE IN KINETIC ENERGY

• Forces cause acceleration and thus can cause change in speed \(\rightarrow \) change kinetic energy \(K = \frac{1}{2} m v^2 \).
• Component of force parallel to velocity \(\vec{v} \) changes \(K \).
• Kinetic energy changes are greater the longer the parallel force is applied.

We need a simple method of describing and determining how much of one vector (e.g., \(\vec{F} \)) is parallel to another vector (e.g., \(\vec{v} \)). This is done with the vector dot product.

DOT PRODUCT OF TWO VECTORS

The *Dot Product* of two vectors \(\vec{A} \) and \(\vec{B} \) is the *scalar* quantity:

\[\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta_{AB} = A B \cos \theta_{AB} \]

where

\[\theta_{AB} = \text{angle between vectors } \vec{A} \text{ & } \vec{B} \]
Equivalent view: \[\mathbf{A} \cdot \mathbf{B} = AB \cos \Theta_{AB} = A \left[B \cos \Theta_{AB} \right] = AB \text{dir} \mathbf{A} \]

where \(\text{dir} \mathbf{A} = B \cos \Theta_{AB} \) is the component of vector \(\mathbf{B} \) in the direction of the vector \(\mathbf{A} \).

We’re asking: How much of \(\mathbf{B} \) is in the direction of \(\mathbf{A} \)?

For \(\Theta \gt 90^\circ \), \(\text{dir} \mathbf{A} \lt 0 \)

\[\mathbf{A} \cdot \mathbf{B} = AB \text{dir} \mathbf{A} \lt 0 \]

SPECIAL DISPENSATIONS

For perpendicular vectors, you are allowed to simply write

\[\mathbf{A} \cdot \mathbf{B} = 0 \]

For similarly directed vectors, you are allowed to simply write

\[\mathbf{A} \cdot \mathbf{B} = +AB \]

For oppositely directed vectors, you may write

\[\mathbf{A} \cdot \mathbf{B} = -AB \]

MATH PROPERTIES OF DOT PRODUCT

The dot product satisfies the math properties:

\[\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A} \] (commutative)

\[(\mathbf{A} + \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot \mathbf{C} + \mathbf{B} \cdot \mathbf{C} \] (distributive)

\[\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1 \] (\(\parallel \)) unit vectors

\[\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0 \] (\(\perp \)) unit vectors

Dot Product with Components

The numerical value of the dot product of two vectors can be evaluated using the values of their components in any given axis system.

\[\mathbf{A} = A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k} \]

\[\mathbf{B} = B_x \mathbf{i} + B_y \mathbf{j} + B_z \mathbf{k} \]

One can show that:

\[\mathbf{A} \cdot \mathbf{B} = AB \cos \Theta_{AB} = A_x B_x + A_y B_y + A_z B_z \]
A PHYSICIST’S VIEW OF WORK

The dot product can be used to define a quantity, WORK, that accounts for the effect of forces that change kinetic energy, i.e., forces parallel to velocity.

Work done on an object by force \(\mathbf{F} \) as it moves on path \(\mathbf{r}(t) \) from initial position \(\mathbf{r}_i \) to final position \(\mathbf{r}_f \) is:

\[
(W_F)_{i-f} = \int_{r_i}^{r_f} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{\ell} = \int_{r_i}^{r_f} \mathbf{F}(\| \mathbf{v} \| \mathbf{v}) \cdot d\mathbf{\ell} = \int_{r_i}^{r_f} F_{\parallel} d\mathbf{\ell}
\]

where \(d\mathbf{\ell} \) is a small distance step and \(F_{\parallel} \) is the component of force in direction of the instantaneous velocity \(\mathbf{v} \):

→ We have picked out the component of force that causes a change in speed and thus kinetic energy.

WORK - KINETIC ENERGY THEOREM

\[
(W_F)_{i-f} = \int_{r_i}^{r_f} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{\ell} = \int_{r_i}^{r_f} F_{\parallel} d\mathbf{\ell}
\]

• \(F_{\parallel} \) changes the speed → changes Kinetic Energy

∴ Change in KE is related to physicist's Work!

\[
(W_{\text{net}})_{i-f} = \Delta K = K_f - K_i = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2
\]

Change in KE of object = How much work done on it!

FORCE CAN VARY OVER PATH

A force can change in magnitude and/or direction as the particle moves along a path.

We can break the path into segments \(\Delta \mathbf{\ell}_n \) (i.e., vector steps), over each of which the force is approximately constant

\[
W_F = \sum \mathbf{F}(\mathbf{r}_n) \cdot \Delta \mathbf{\ell}_n = \int_{r_i}^{r_f} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{\ell}
\]

W_{\text{NET}} Is Net Work (not Network)

The net work \(W_{\text{net}} \) done on an object in going from some initial state to some final state is the work done along the path by the net force \(\mathbf{F}_{\text{net}} \) on the object. It is also the sum of “works” done by the individual forces:

\[
(W_{\text{net}})_{i-f} = \sum W_n = \text{sum of individual works}
\]

This conjoined with \((W_{\text{net}})_{i-f} = \Delta K \) (Work-KE theorem) gives a much simpler method of determining changes in speed, particularly if a non-constant force is involved!!

Video: car commercial “Isn’t it nice when things just work”
SPECIAL DISPENSATIONS

1. **Constant Force (both in magnitude & direction)**

 If \(\mathbf{F} \) is constant over a path segment, i.e. \(\mathbf{F}(\mathbf{r}) = \mathbf{F} \) and your diagram shows it, then you are permitted to just write \(W_f = \mathbf{F} \cdot \Delta \mathbf{D} \) or make the corresponding substitution because

 \[
 \left(W_f \right)_{i \rightarrow f} = \int_{\mathbf{r}_i}^{\mathbf{r}_f} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_{\mathbf{r}_i}^{\mathbf{r}_f} \mathbf{F} \cdot d\mathbf{r} \]

 where \(\Delta \mathbf{D} \) is the vector displacement for the segment.

2. **Force is always perpendicular to path (whether constant in magnitude or not)**

 If \(\mathbf{F} \) is always perpendicular to the path segment, i.e. \(\mathbf{F}(\mathbf{r}) \perp d\mathbf{r} \) and your diagram shows it, then you are permitted to just write \(W_f = 0 \) or make the corresponding substitution because

 \[
 \left(W_f \right)_{i \rightarrow f} = \int_{\mathbf{r}_i}^{\mathbf{r}_f} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_{\mathbf{r}_i}^{\mathbf{r}_f} \mathbf{F} \cdot d\mathbf{r} = 0
 \]

Example: Determine the change in KE of a block of mass \(m \) pulled a distance \(D \) over a rough horizontal surface with coefficient of friction \(\mu \).

\[
\Delta K = W_{\text{net}} = \sum W_a = W_N + W_p + W_{\text{grav}} + W_f
\]

\[
K_f - K_i = N \cdot \Delta \mathbf{D} + \mathbf{F}_p \cdot \Delta \mathbf{D} + \mathbf{F}_g \cdot \Delta \mathbf{D} + \mathbf{F}_f \cdot \Delta \mathbf{D}
\]

\[
= 0 + PD \cos \theta + 0 + [-(\mu N)D]
\]

To get \(N \):
\[
\Sigma F_x = N_x + P_x + F_{g_x} + F_f = ma_x
\]

\[
= (+N) + (+P \sin \theta) + (-mg) + 0 = m(0)
\]

Caution:
\(N = (mg - P \sin \theta) \); never assume \(N = mg \)

Example: A ball of mass \(m \) is attached to a massless rigid rod of length \(L \). The rod is released from rest in a horizontal orientation. What is its speed at the bottom of its swing?

What is relationship between forces and speed? The Work-KE theorem!

\[
\Delta K = (W_{\text{net}})_{i \rightarrow f}
\]

But outward force \(\mathbf{T} \) produced by the rod varies. What to do?

Don’t lose heart; follow Litany!

2 forces → 2 W terms → \(\frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 = W_T + W_{\text{grav}} \)
½mv_f^2 - ½mv_i^2 = W_T + W_g

dT and T always perpendicular

\[W_T = \int_{t_i}^{t_f} \mathbf{T} \cdot \mathbf{d} \mathbf{t} = W(0) = 0 \]

\(F_g \) constant \(\rightarrow \) \(W_{grav} = F_g \cdot D = F_{g \text{ direct grav}} = mg(+L) \)

\(½mv_f^2 - ½m(0)^2 = W_T + W_g = mgL \)

\(½mv_i^2 = mgL \) (same as direct drop because \(T \) does no work!!)

Demo: Speed of swinging mass through photo gate

\[W_{net} = K_f - K_i = ½mv_f^2 - ½mv_i^2 \]

\[\mathbf{N} + W_T + W_{grav} = ½m(0)^2 - ½m(V)^2 \]

\[0 + (-fD) + mg D \cos(90°-0) \]

\[= 0 - ½m(V)^2 \]

\[-\mu N D + mg D \sin\theta = -½mV^2 \]

*To get N: \(\Sigma F_y = N_y + F_{y \parallel} + f_y = m a_y \)

\[= (+N) + (-mg \cos\theta) + 0 = m(0) \]

*Caution: \(N = (mg \cos\theta) \); *never assume* \(N = mg \)

\[-D \mu (mg \cos\theta) + D mg \sin\theta = -½mV^2 \]

\[D = \frac{½V^2}{(\mu g \cos\theta - g \sin\theta)} \]

Example: A truck is going at speed \(V \) down a hill that makes angle \(\theta \) with the horizontal. The driver sees a brick wall ahead in the middle of the road. If coefficient of friction between the tires and the road is \(\mu \), at what distance \(D \) ahead of the wall must the driver apply the brakes if she chooses not to hit the wall?

Power is the *rate of work* that is done on an object; i.e., how fast work (an energy) is done on something. This means it is a *scalar* quantity.

The instantaneous power \(P \) supplied by force \(\mathbf{F} \) to an object moving with velocity vector \(\mathbf{v} \) is a scalar that equals the dot product of the velocity \(\mathbf{v} \) with the force vector \(\mathbf{F} \):

\[P_F = \mathbf{F} \cdot \mathbf{v} \]

Note that \(P \) can be positive or negative.
BIENIEK’S RULES OF POWER

1. If the power acting on object is positive, it speeds up because there is a component of force in the direction of velocity vector; and vice versa.

2. If the power on an object is negative, it slows down because there is a component of force opposite to the velocity.

3. If a force acts perpendicular to velocity, it delivers no power to the object and the speed doesn’t change.

Example: One day you are pressing against a wooden block that is sliding down a vertical wall and decelerating. The force \vec{F} you’re applying to the block has magnitude $F = 50$ N, and is inclined upward with respect to the horizontal by angle $\theta = 20^\circ$. The coefficient of friction between the block and wall is $\mu_k = 0.10$. When the speed of the block is $V = 2$ m/s, what is the power delivered to the block by force \vec{F}?

$$P_F = \vec{F} \cdot \vec{V} = F V \cos \theta_{FV}$$

$$= F V \cos (\theta + 90^\circ) = F V \cos (20^\circ + 90^\circ)$$

$$= 50 \times 2 \times (-0.342) = -34.2 \text{ W}$$

Note: Coord system doesn’t come into it.