1. (17 pts) A hollow spherical shell carries a charge density
\[\rho(r) = \frac{A}{r} \quad \text{for} \quad a \leq r \leq b, \text{where} \ A \ \text{is a constant.} \]

a) Find the electric field in each of the three regions:
(i) \(r < a \), (ii) \(a < r < b \), (iii) \(r > b \).

b) Find the energy stored in the distribution, \(i.e., \) the work done to assemble the charge distribution.

2. (17 pts) An uncharged (grounded) metal sphere of radius \(R \) is placed in a uniform electric field given by \(\vec{E} = E_0 \hat{z} \).

a) Determine the potential inside and outside the metal sphere.

b) Determine the induced surface charge density \(\sigma(\theta) \) on the metal sphere.

3. (17 pts) A parallel plate capacitor is filled with three dielectrics with dielectric constants \(\varepsilon_{r1}, \varepsilon_{r2}, \) and \(\varepsilon_{r3} \) as shown. Half the capacitor is filled with \(\varepsilon_{r3} \). The other half is divided equally between \(\varepsilon_{r1} \) and \(\varepsilon_{r2} \). The total area of a plate is \(A \) and \(d \) is the distance between the plates.

Determine the total capacitance of the arrangement in terms of the original capacitance \(C_0 \) with no dielectric material present \(\left(C_0 = \varepsilon_0 A/d \right) \) if \(\varepsilon_{r1} = 3, \varepsilon_{r2} = 6, \) and \(\varepsilon_{r3} = 4 \).

4. (17 pts) Consider a long coaxial cable. The center conductor \(s \leq a \) carries a current \(I \) to the right and the outer conductor \(b \leq s \leq c \) carries the return current \(I \) to the left. The currents are uniformly distributed in the conductors.

Use Ampere’s Law to find the magnetic field \(\vec{B} \) for all \(s \).
5. (17 pts) A long circular cylinder of radius R carries a magnetization $\vec{M} = as^2 \hat{\phi}$, where a is a constant, s is the distance from the axis, and $\hat{\phi}$ is the usual azimuthal unit vector.

a) Determine the bound currents, \vec{J}_b and \vec{K}_b.

b) Use Ampere’s Law with the magnetic field \vec{B} to determine the field inside and outside the cylinder.

c) Use Ampere’s Law with the auxiliary field \vec{H} to determine the magnetic field inside and outside the cylinder.

6. (17 pts) A phonograph record of radius R, carrying a uniform surface charge σ, is rotating at constant angular velocity ω about its axis which is pointing in the z direction.

a) Determine the surface current density \vec{K} at a distance s from the center.

b) Find its magnetic dipole moment.

c) What is the magnetic field \vec{B} in the xy plane at a distance s from the origin at the center of the phonograph record if $s >> R$?

Electric field due to an electric dipole $\vec{E} = \frac{k_e}{r^3}[3(\hat{P} \cdot \hat{r}) \hat{r} - \hat{P}]$

Bound charge $\rho_b = -\nabla \cdot \vec{P}$ \hspace{1cm} $\sigma_b = \hat{P} \cdot \hat{n}$

Magnetic field due to a magnetic dipole $\vec{B} = \frac{k_m}{r^3}[3(\hat{m} \cdot \hat{r}) \hat{r} - \hat{m}]$

Bound currents $\vec{J}_b = \nabla \times \vec{M}$ \hspace{1cm} $\vec{K}_b = \vec{M} \times \hat{n}$

Biot-Savart Law $\vec{B}(\vec{r}) = k_m \int \frac{\vec{I} \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} \, dl'$