Phys 208 – Homework (HW12) – SP13 (Due Wednesday, February 27, 2013)

Read the following: Ch 4-Sect 12 Differentiation of integrals; Leibniz’ Rule
Ch 5- Sect 4 Change of variables in integrals; Jacobians

Answers: 4.12.8 \(\frac{dx}{du} = e^{x^2} \) 4.12.11 \(3x^2 - 2x^3 + 3x - 6 \)

Phys 208 – Homework (HW13) – SP13 (Due Friday, March 1, 2013)

Read the following: Ch 6 -- Sect. 4 Differentiation of Vectors

Problems: Ch 5 – 5.4.14, 5.4.19, 5.6.25, 5.6.27

Answers: 5.6.25 \(\pi / 2 \)

HW13.1 Verify the integral in problem 4.12.15, namely that \(\int_0^\infty e^{-ax} \sin kx \, dx = \frac{k}{a^2 + k^2} \). Carry out the integral \(\int_0^\infty e^{-ax} e^{ikx} \, dx \) to determine both of the integrals \(\int_0^\infty e^{-ax} \sin kx \, dx \) and \(\int_0^\infty e^{-ax} \cos kx \, dx \).

HW13.2 Find the general form for the integral \(I_n = \int_0^\infty \frac{dx}{(y^2 + x^2)^{n+1}} \) for \(n = 1, 2, 3, \ldots \), given that \(I_0 = \int_0^\infty \frac{dx}{y^2 + x^2} = \frac{\pi}{2y} \). Hint: set \(a = y^2 \) and take derivatives with respect to \(a \) to generate the desired integral. Answer: \(I_n = \frac{\pi (2n-1)!!}{n! 2^{n+1} y^{2n+1}} \).

HW 13.3 (4.12.16) In the kinetic theory of gases one has to evaluates integrals of the form

\[
I_m = \int_0^\infty t^m e^{-at^2} \, dt.
\]

Given that \(\int_0^\infty e^{-at^2} \, dt = \frac{1}{2} \sqrt{\frac{\pi}{a}} \), evaluate \(I_m \) for \(m = 1, 2, 3, \ldots \)

Answer: \(I_m = \frac{(2m-1)!!}{2^{m+1} a^m} \sqrt{\frac{\pi}{a}} \).