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Abstract

Consider the following difference equation of order k + 1

xn+1 = f(xn) + g(xn−k), n = 0, 1, . . . ,

where f, g : [0,∞) → [0,∞) are continuous functions, and k is a nonnegative
integer. We establish a sufficient condition for the global attractivity of positive
solutions of this equation. Our result can be applied to the following biological
model

xn+1 =
ax2

n

b+ xn
+ c

ep−qxn

1 + ep−qxn
, n = 0, 1, . . . ,

where 0 < a < 1, b, c, p and q are positive constants, whose dynamics of solu-
tions has been studied in [8] recently. A new global stability result for the positive
solutions of this model is obtained, which is a significant improvement of the cor-
responding result obtained in [8].

AMS Subject Classifications: 39A10, 92D25.
Keywords: Higher order difference equation, biological model, global attractivity, pos-
itive equilibrium.

1 Introduction
The dynamics of positive solutions of the difference equation

xn+1 =
ax2

n

b+ xn
+ c

ep−qxn

1 + ep−qxn
, n = 0, 1, . . . , (1.1)
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where 0 < a < 1, b, c, p and q are positive constants, is studied in [8] recently. Eq.
(1.1) is a biological model derived from the evaluation of a perennial grass [13]. The
boundedness and the persistence of positive solutions, the existence, the attractivity and
the global asymptotic stability of the unique positive equilibrium and the existence of
periodic solutions have been discussed in [8]. Motivated by the work in [8], we study
here the asymptotic behavior of positive solutions of the following general higher order
difference equation

xn+1 = f(xn) + g(xn−k), n = 0, 1, . . . , (1.2)

where f, g : [0,∞)→ [0,∞) are continuous functions with f nondecreasing and k is a
nonnegative integer.

Clearly, Eq. (1.1) is a special case of Eq. (1.2) with f(x) =
ax2

b+ x
, g(x) = c

ep−qx

1 + ep−qx
and k = 0. In this paper, we will establish a sufficient condition for the global attractiv-
ity of positive solutions of Eq. (1.2). In particular, by applying our result to Eq. (1.1), we
will obtain a new result on the globally asymptotic stability of positive solutions of Eq.
(1.1), which is a significant improvement of the corresponding result obtained in [8].

Because of its theoretical interest and many applications, the study of difference
equations has become an active area of research, see, for example, [1–13] and references
cited therein. Recently, the asymptotic behavior of positive solutions of the higher order
difference equation

xn+1 − xn = pn[f(xn−k)− g(xn+1)], n = 0, 1, . . . , (1.3)

where k ∈ {0, 1, . . .}, f, g ∈ [[0,∞), [0,∞)] with g nondecreasing, and {pn} is a non-
negative sequence, is studied and some global attractivity results are obtained in [7].
These results may be applied to several difference equations derived from mathemati-
cal biology. However, Eq. (1.1) can not be written in the form (1.3) and so the results
obtained in [7] cannot be applied to this case.

2 Main Results
In this section, we establish a sufficient condition for the global attractivity of positive
solutions of Eq. (1.2). In the following discussion, we assume that Eq. (1.2) has a
unique positive equilibrium x̄, that is, x̄ is the only positive solution of the equation

f(x) + g(x) = x. In addition, we adopt the notation
n∑

i=m

an = 0 whenever m > n.

Theorem 2.1. Assume that f(x) is nondecreasing and there is a positive number a < 1
such that f(x) ≤ ax and f(x)− ax is nonincreasing for x ≥ 0. Suppose also that

(x− x̄)(f(x) + g(x)− x) < 0 for x > 0 and x 6= x̄, (2.1)
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and that g is L-Lipschitz with [
1− ak+1

1− a

]
L < 1.

Then every positive solution {xn} of Eq. (1.2) converges to x̄ as n→∞.

Proof. First, we show that {xn} is bounded. Otherwise, there is a subsequence {xni
}

of {xn} such that

xni
> max{xn : −k ≤ n < ni}, i = 1, 2, . . . , and lim

i→∞
xni

=∞.

From Eq. (1.2) we see that

g(xni−1−k) + f(xni
)− xni

= f(xni
)− f(xni−1) ≥ 0

and so it follows that
g(xni−1−k) ≥ xni

− f(xni
). (2.2)

Since f(x)− ax is nondecreasing, x− f(x) is increasing. Then (2.2) yields

g(xni−1−k) > xni−k−1 − f(xni−k−1).

Hence,

f(xni−1−k) + g(xni−k−1)− xni−k−1 > 0

which, in view of (2.1), implies that xni−k−1 < x̄. Then it follows that {g(xni−k−1)} is
bounded which clearly contradicts (2.2) since

xni
− f(xni

) ≥ xni
− axni

→∞ as i→∞.

Hence, {xn} must be bounded.
Now, we are ready to show that xn → x̄ as n→∞. First, we assume that {xn} is a

nonoscillatory (about x̄) solution. Suppose that xn − x̄ is eventually nonnegative. The
proof for the case that xn − x̄ is eventually nonpositive is similar and will be omitted.
Let lim supn→∞xn = A. Then x̄ ≤ A < ∞. Clearly, it suffices to show that A = x̄.
First, we assume that {xn} is nonincreasing eventually. Then lim

n→∞
xn = A. If A > x̄,

then by noting (2.1), it follows from Eq. (1.2) that

xn+1 − x0 =
n∑

i=0

(f(xi) + g(xi−k)− xi)→ −∞ as n→∞,

which is a contradiction. Hence, A = x̄.
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Next, assume that {xn} is not eventually nonincreasing. Then, there is a subse-
quence {xnm} of {xn} such that

lim
m→∞

xnm = A and xnm > xnm−1, m = 0, 1, . . . .

Hence, it follows from Eq. (1.2) that

g(xnm−1−k) + f(xnm)− xnm = f(xnm)− f(xnm−1) ≥ 0, m = 0, 1, . . . ,

and so
g(xnm−1−k) ≥ xnm − f(xnm), m = 0, 1, . . . . (2.3)

Since xnm−1−k ≥ x̄,

g(xnm−1−k) + f(xnm−1−k)− xnm−1−k ≤ 0

and it follows that
g(xnm−1−k) ≤ xnm−1−k − f(xnm−1−k). (2.4)

Hence, in view of (2.3) and (2.4), we see that

xnm−1−k − f(xnm−1−k) ≥ xnm − f(xnm).

By noting that x − f(x) is increasing, we see that xnm−1−k ≥ xnm which yields
lim

m→∞
xnm−1−k = A. Then by taking limit on both sides of (2.3), we find that

g(A) + f(A)− A ≥ 0

which implies that A ≤ x̄. Hence, A = x̄.
Finally, assume that {xn} is a solution of Eq. (1.2) and oscillates about x̄. Let

yn = xn − x̄. Then {yn} satisfies

yn+1 = f(yn + x̄)− f(x̄) + g(yn−k + x̄)− g(x̄), n = 0, 1, . . . , (2.5)

and {yn} oscillates about zero. Since {xn} is bounded, there is a positive constant M
such that |yn| = |xn − x̄| ≤M, n = 0, 1, . . . . Then by noting the Lipschitz property of
g, we see that

|g(yn−k + x̄)− g(x̄)| ≤ L|yn−k| ≤ LM,n ≥ k.

Let yl and ys be two consecutive members of the solution {yn} with N0 < l < s such
that

yl ≤ 0, ys+1 ≤ 0 and yn > 0 for l + 1 ≤ n ≤ s. (2.6)

Let
yr = max{yl+1, yl+2, . . . , ys} (2.7)
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where yr is chosen as the first one to reach the maximum among yl+1, yl+2 . . . ys. We
claim that

r − (l + 1) ≤ k. (2.8)

Suppose, for the sake of contradiction, that r− (l+ 1) > k. Then, yr > yr−1−k > 0. By
noting yr−1−k + x̄ > x̄ and (2.1), we see that

g(yr−1−k + x̄) + f(yr−1−k + x̄)− (yr−1−k + x̄) < 0. (2.9)

Since f(x)− x is decreasing,

f(yr−1−k + x̄)− (yr−1−k + x̄) > f(yr + x̄)− (yr + x̄)

and then it follows from (2.9) that

g(yr−1−k + x̄) + f(yr + x̄)− (yr + x̄) < 0.

However, on the other hand, (2.5) yields

g(yr−1−k + x̄) + f(yr + x̄)− (yr + x̄) = f(yr + x̄)− f(yr−1 + x̄) ≥ 0

which contradicts (2.9). Hence, (2.8) holds.
Now, observe that

yn+1 − ayn = f(yn + x̄)− f(x̄)− ayn + g(yn−k + x̄)− g(x̄)

and so it follows that
yn+1

an+1
− yn
an

=
1

an+1
[f(yn + x̄)− f(x̄)− ayn] +

1

an+1
[g(yn−k + x̄)− g(x̄)].

Summing up from l to r − 1, we see that

yr
ar
− yl
al

=
r−1∑
j=l

1

aj+1
[f(yj + x̄)− f(x̄)− ayj] +

r−1∑
j=l

1

aj+1
[g(yj−k + x̄)− g(x̄)]

and so

yr = ar

(
yl
al

+
r−1∑
j=l

1

aj+1
[f(yj + x̄)− f(x̄)− ayj] +

r−1∑
j=l

1

aj+1
[g(yj−k + x̄)− g(x̄)]

)

= ar

(
yl
al

+
1

al+1
[f(yl + x̄)− f(x̄)− ayl] +

r−2∑
j=l

1

aj+1
[f(yj + x̄)− f(x̄)− ayj]

+
r−1∑
j=l

1

aj+1
[g(yj−k + x̄)− g(x̄)]

)

= ar

(
1

al+1
[f(yl + x̄)− f(x̄)] +

r−2∑
j=l

1

aj+1
[f(yj + x̄)− f(x̄)− ayj]

+
r−1∑
j=l

1

aj+1
[g(yj−k + x̄)− g(x̄)]

)
. (2.10)
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Then by noting (2.6), f(x) is nondecreasing and f(x)−ax is nonincreasing, we see that

f(yl + x̄)− f(x̄) ≤ 0 and f(yj + x̄)− f(x̄)− ayj ≤ 0, j = l + 1, . . . , r − 1.

Hence, it follow from (2.10) that

yr ≤ ar
r−1∑
j=l

1

aj+1
[g(yj−k + x̄))− g(x̄))] ≤

[
1− ak+1

1− a

]
LM

and so

yn ≤
[

1− ak+1

1− a

]
LM, l ≤ n ≤ s.

Since yl and ys are two arbitrary members of the solution with property (2.6), we see

that there is a positive integer N ′1 ≥ N0 such that yn ≤ [
1− ak+1

1− a
]ML, n ≥ N ′1. Then,

by a similar argument, it can be shown that there is a positive integer N ′′1 ≥ N0 such

that yn ≥ −[
1− ak+1

1− a
]ML, n ≥ N ′′1 . Hence, there is a positive integer N1 ≥ N0 such

that

|yn| ≤
[

1− ak+1

1− a

]
LM, n ≥ N1. (2.11)

Now, by noting the Lipschitz property of f(x) and (2.11), we see that

|g(yn−k + x̄)− g(x̄)| ≤ L|yn−k| ≤
[

1− ak+1

1− a

]
L2M,n ≥ N1 + k.

Let yl and ys be two consecutive members of the solution {yn} with t0 ≤ l < s such
that (2.6) holds. Let yr be defined by (2.7). By a similar argument, we may show that
(2.8) holds and

yr ≤
([

1− ak+1

1− a

]
L

)2

M.

Then it follows that yn(≤ [
1− ak+1

1− a
]L)2M, l ≤ n ≤ s and so again by noting yl and ys

are two arbitrary members of the solution with property (2.6), there is a positive integer

N ′2 ≥ N1 + k such tat yn ≤ ([
1− ak+1

1− a
]L)2M,n ≥ N ′2. Similarly, it can be shown that

there is a positive integer N ′′2 ≥ N1 + K such that yn ≥ −([
1− ak+1

1− a
]L)2M,n ≥ N ′′2 .

Hence, there is a positive integer N2 ≥ N1 + k such that |yn| ≤ ([
1− ak+1

1− a
]L)2M,n ≥

N2. Finally, by induction, we find that for any positive integer m, there is a positive
integer Nm with Nm →∞ as m→∞ such that

|yn| ≤
([

1− ak+1

1− a

]
L

)m

M,n ≥ Nm.
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Then, by noting the hypotheses
[

1− ak+1

1− a

]
L < 1, we see that yn → 0 as n→∞, and

so it follows that xn → x̄ as n→∞. The proof is complete.

3 Applications
Consider the difference equation

xn+1 =
ax2

n

b+ xn
+ c

ep−qxn−k

1 + ep−qxn−k
, n = 0, 1, . . . , (3.1)

where 0 < a < 1, b, c, p and q are positive constants, and k is a nonnegative integer. Eq.
(3.1) is in the form of (1.2) with

f(x) =
ax2

b+ x
and g(x) = c

ep−qx

1 + ep−qx
.

Clearly, f is increasing and f(x) ≤ ax. By noting

(f(x)− ax)′ = − ab2

(b+ x)2
< 0

we see that f(x)− ax is decreasing. Let

F (x) =
ax2

b+ x
+ c

ep−qx

1 + ep−qx
− x.

It is easy to check that F (0) > 0, lim
x→∞

F (x) = −∞ and F ′(x) < 0. Hence, there is a

unique positive number x̄ such that F (x̄) = 0 , that is, Eq. (3.1) has a unique positive
equilibrium x̄, and

(x− x̄)(f(x) + g(x)− x) < 0, x > 0 and x 6= x̄.

Now, observe that

g′(x) = −cq ep−qx

(1 + ep−qx)2
and g′′(x) = cq2 e

p−qx(1− ep−qx)

(1 + ep−qx)3
.

By noting that x =
p

q
is the only point such that g′′(x) = 0, we see that |g′(x)| takes

maximum when x =
p

q
and |g′(p

q
)| =

cq

4
. Hence, g is L-Lipschitz with L =

cq

4
. Then

by Theorem 2.1, we have that following conclusion immediately.

Theorem 3.1. Assume that [
1− ak+1

1− a

]
cq

4
< 1. (3.2)

Then every positive solution {xn} of Eq. (3.1) tends to its positive equilibrium x̄ as
n→∞.
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We claim that (3.2) is also a sufficient condition for the positive equilibrium x̄ to be
globally asymptotically stable when k = 0 or k = 1. In fact, when k = 0, (3.2) reduces
to cq < 4 and the linearized equation of (3.1) about the equilibrium x̄ is

xn+1 =

(
ax̄2 + 2abx̄

(x̄+ b)2
− cq ep−qx̄

(1 + ep−qx̄)2

)
xn. (3.3)

It is obvious that
ax̄2 + 2abx̄

(x̄+ b)2
− cq ep−qx̄

(1 + ep−qx̄)2
< 1

since
ax̄2 + 2abx̄

(x̄+ b)2
<
x̄2 + 2bx̄

(x̄+ b)2
< 1.

By noting cq < 4, we see that

cq
ep−qx̄

(1 + ep−qx̄)2
< 4

ep−qx̄

(1 + ep−qx̄)2
≤ 1 < 1 +

ax̄2 + 2abx̄

(x̄+ b)2

and so

−1 <
ax̄2 + 2abx̄

(x̄+ b)2
− cq ep−qx̄

(1 + ep−qx̄)2
.

Hence, it follows that ∣∣∣∣ax̄2 + 2abx̄

(x̄+ b)2
− cq ep−qx̄

(1 + ep−qx̄)2

∣∣∣∣ < 1

and so the zero solution of Eq. (3.3) is asymptotically stable. By the linearization sta-
bility theory, the equilibrium x̄ of Eq. (3.1) is locally asymptoticly stable. Then by
combining this fact and Theorem 3.1, we see that the equilibrium x̄ of Eq. (3.1) is glob-
ally asymptoticly stable.

When k = 1, (3.2) reduces to cq <
4

1 + a
and the linearized equation of (3.1) about

the equilibrium x̄ is

xn+1 =
ax̄2 + 2abx̄

(x̄+ b)2
xn − cq

ep−qx̄

(1 + ep−qx̄)2
xn−1. (3.4)

It is well known (see, for example [6]) for the linear equation

yn+1 + αyn + βyn−1 = 0,

where α and β are constants, a necessary and sufficient condition for the asymptotic
stability is

|α| < 1 + β < 2.
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Hence, by noting that under the condition cq <
4

1 + a
,

ax̄2 + 2abx̄

(x̄+ b)2
< 1 + cq

ep−qx̄

(1 + ep−qx̄)2
< 1 + 4

ep−qx̄

(1 + ep−qx̄)2
≤ 2,

we see that the zero solution of Eq. (3.4) is asymptoticly stable. Then it follows that the
equilibrium x̄ of Eq. (3.1) is locally asymptotically stable, which together with Theorem
3.1 implies that x̄ is globally asymptotically stable.

Remark 3.2. In particular, when k = 0, Eq. (3.1) reduces to the first order difference
equation

xn+1 =
ax2

n

b+ xn
+ c

ep−qxn

1 + ep−qxn
, n = 0, 1, . . . (3.5)

which is a biological model mentioned in Section 1. It has been shown in [8] that if

cq < 2(1− a), (3.6)

then the positive equilibrium x̄ of Eq. (3.5) is globally asymptotically stable. Clearly,
our condition cq < 4 is a significant improvement of (3.6).
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