Global Attractivity in a Nonlinear Difference Equation and Applications to a Biological Model

Chuanxi Qian
Mississippi State University
Department of Mathematics and Statistics
Mississippi State, MS 39762, USA
qian@math.msstate.edu

Abstract
Consider the following difference equation of order $k + 1$

$$x_{n+1} = f(x_n) + g(x_{n-k}), \quad n = 0, 1, \ldots,$$

where $f, g : [0, \infty) \to [0, \infty)$ are continuous functions, and k is a nonnegative integer. We establish a sufficient condition for the global attractivity of positive solutions of this equation. Our result can be applied to the following biological model

$$x_{n+1} = \frac{ax_n^2}{b + x_n} + c \frac{e^{p-qx_n}}{1 + e^{p-qx_n}}, \quad n = 0, 1, \ldots,$$

where $0 < a < 1, b, c, p$ and q are positive constants, whose dynamics of solutions has been studied in [8] recently. A new global stability result for the positive solutions of this model is obtained, which is a significant improvement of the corresponding result obtained in [8].

AMS Subject Classifications: 39A10, 92D25.
Keywords: Higher order difference equation, biological model, global attractivity, positive equilibrium.

1 Introduction

The dynamics of positive solutions of the difference equation

$$x_{n+1} = \frac{ax_n^2}{b + x_n} + c \frac{e^{p-qx_n}}{1 + e^{p-qx_n}}, \quad n = 0, 1, \ldots,$$

(1.1)
where $0 < a < 1$, b, c, p and q are positive constants, is studied in [8] recently. Eq. (1.1) is a biological model derived from the evaluation of a perennial grass [13]. The boundedness and the persistence of positive solutions, the existence, the attractivity and the global asymptotic stability of the unique positive equilibrium and the existence of periodic solutions have been discussed in [8]. Motivated by the work in [8], we study here the asymptotic behavior of positive solutions of the following general higher order difference equation

$$x_{n+1} = f(x_n) + g(x_{n-k}), \quad n = 0, 1, \ldots,$$

where $f, g : [0, \infty) \to [0, \infty)$ are continuous functions with f nondecreasing and k is a nonnegative integer.

Clearly, Eq. (1.1) is a special case of Eq. (1.2) with $f(x) = \frac{ax^2}{b+x}, g(x) = e^{p-qx} - e^{-qx}$ and $k = 0$. In this paper, we will establish a sufficient condition for the global attractivity of positive solutions of Eq. (1.2). In particular, by applying our result to Eq. (1.1), we will obtain a new result on the globally asymptotic stability of positive solutions of Eq. (1.1), which is a significant improvement of the corresponding result obtained in [8].

Because of its theoretical interest and many applications, the study of difference equations has become an active area of research, see, for example, [1–13] and references cited therein. Recently, the asymptotic behavior of positive solutions of the higher order difference equation

$$x_{n+1} - x_n = p_n[f(x_{n-k}) - g(x_{n+1})], \quad n = 0, 1, \ldots,$$

where $k \in \{0, 1, \ldots\}$, $f, g \in [0, \infty), [0, \infty]$ with g nondecreasing, and $\{p_n\}$ is a nonnegative sequence, is studied and some global attractivity results are obtained in [7]. These results may be applied to several difference equations derived from mathematical biology. However, Eq. (1.1) can not be written in the form (1.3) and so the results obtained in [7] cannot be applied to this case.

2 Main Results

In this section, we establish a sufficient condition for the global attractivity of positive solutions of Eq. (1.2). In the following discussion, we assume that Eq. (1.2) has a unique positive equilibrium \bar{x}, that is, \bar{x} is the only positive solution of the equation $f(x) + g(x) = x$. In addition, we adopt the notation $\sum_{i=m}^{n} a_n = 0$ whenever $m > n$.

Theorem 2.1. Assume that $f(x)$ is nondecreasing and there is a positive number $a < 1$ such that $f(x) \leq ax$ and $f(x) - ax$ is nonincreasing for $x \geq 0$. Suppose also that

$$(x - \bar{x})(f(x) + g(x) - x) < 0 \text{ for } x > 0 \text{ and } x \neq \bar{x},$$

(2.1)
Global Attractivity in a Nonlinear Difference Equation

and that \(g \) is \(L \)-Lipschitz with

\[
\left[\frac{1 - a^{k+1}}{1 - a} \right] L < 1.
\]

Then every positive solution \(\{x_n\} \) of Eq. (1.2) converges to \(\bar{x} \) as \(n \to \infty \).

Proof. First, we show that \(\{x_n\} \) is bounded. Otherwise, there is a subsequence \(\{x_{n_i}\} \) of \(\{x_n\} \) such that

\[
x_{n_i} > \max\{x_n : -k \leq n < n_i\}, \quad i = 1, 2, \ldots, \quad \text{and} \quad \lim_{i \to \infty} x_{n_i} = \infty.
\]

From Eq. (1.2) we see that

\[
g(x_{n_i-1-k}) + f(x_{n_i}) - x_{n_i} = f(x_{n_i}) - f(x_{n_i-1}) \geq 0
\]

and so it follows that

\[
g(x_{n_i-1-k}) \geq x_{n_i} - f(x_{n_i}). \tag{2.2}
\]

Since \(f(x) - ax \) is nondecreasing, \(x - f(x) \) is increasing. Then (2.2) yields

\[
g(x_{n_i-1-k}) > x_{n_i-k-1} - f(x_{n_i-k-1}).
\]

Hence,

\[
f(x_{n_i-1-k}) + g(x_{n_i-k-1}) - x_{n_i-k-1} > 0
\]

which, in view of (2.1), implies that \(x_{n_i-k-1} < \bar{x} \). Then it follows that \(\{g(x_{n_i-k-1})\} \) is bounded which clearly contradicts (2.2) since

\[
x_{n_i} - f(x_{n_i}) \geq x_{n_i} - ax_{n_i} \to \infty \text{ as } i \to \infty.
\]

Hence, \(\{x_n\} \) must be bounded.

Now, we are ready to show that \(x_n \to \bar{x} \) as \(n \to \infty \). First, we assume that \(\{x_n\} \) is a nonoscillatory (about \(\bar{x} \)) solution. Suppose that \(x_n - \bar{x} \) is eventually nonnegative. The proof for the case that \(x_n - \bar{x} \) is eventually nonpositive is similar and will be omitted.

Let \(\lim \sup_{n \to \infty} x_n = A \). Then \(\bar{x} \leq A < \infty \). Clearly, it suffices to show that \(A = \bar{x} \). First, we assume that \(\{x_n\} \) is nonincreasing eventually. Then \(\lim_{n \to \infty} x_n = A \). If \(A > \bar{x} \), then by noting (2.1), it follows from Eq. (1.2) that

\[
x_{n+1} - x_0 = \sum_{i=0}^{n} (f(x_i) + g(x_{i-k}) - x_i) \to -\infty \text{ as } n \to \infty,
\]

which is a contradiction. Hence, \(A = \bar{x} \).
Next, assume that \(\{x_n\} \) is not eventually nonincreasing. Then, there is a subsequence \(\{x_{n_m}\} \) of \(\{x_n\} \) such that

\[
\lim_{m \to \infty} x_{n_m} = A \quad \text{and} \quad x_{n_m} > x_{n_m-1}, \quad m = 0, 1, \ldots
\]

Hence, it follows from Eq. (1.2) that

\[
g(x_{n_m-1-k}) + f(x_{n_m}) - x_{n_m} = f(x_{n_m}) - f(x_{n_m-1}) \geq 0, \quad m = 0, 1, \ldots
\]

and so

\[
g(x_{n_m-1-k}) \geq x_{n_m} - f(x_{n_m}), \quad m = 0, 1, \ldots \quad (2.3)
\]

Since \(x_{n_m-1-k} \geq \bar{x} \),

\[
g(x_{n_m-1-k}) + f(x_{n_m-1-k}) - x_{n_m-1-k} \leq 0
\]

and it follows that

\[
g(x_{n_m-1-k}) \leq x_{n_m-1-k} - f(x_{n_m-1-k}). \quad (2.4)
\]

Hence, in view of (2.3) and (2.4), we see that

\[
x_{n_m-1-k} - f(x_{n_m-1-k}) \geq x_{n_m} - f(x_{n_m}).
\]

By noting that \(x - f(x) \) is increasing, we see that \(x_{n_m-1-k} \geq x_{n_m} \) which yields

\[
\lim_{m \to \infty} x_{n_m-1-k} = A.
\]

Then by taking limit on both sides of (2.3), we find that

\[
g(A) + f(A) - A \geq 0
\]

which implies that \(A \leq \bar{x} \). Hence, \(A = \bar{x} \).

Finally, assume that \(\{x_n\} \) is a solution of Eq. (1.2) and oscillates about \(\bar{x} \). Let \(y_n = x_n - \bar{x} \). Then \(\{y_n\} \) satisfies

\[
y_{n+1} = f(y_n + \bar{x}) - f(\bar{x}) + g(y_{n-k} + \bar{x}) - g(\bar{x}), \quad n = 0, 1, \ldots \quad (2.5)
\]

and \(\{y_n\} \) oscillates about zero. Since \(\{x_n\} \) is bounded, there is a positive constant \(M \) such that \(|y_n| = |x_n - \bar{x}| \leq M, \quad n = 0, 1, \ldots \). Then by noting the Lipschitz property of \(g \), we see that

\[
|g(y_{n-k} + \bar{x}) - g(\bar{x})| \leq L|y_{n-k}| \leq LM, \quad n \geq k.
\]

Let \(y_l \) and \(y_s \) be two consecutive members of the solution \(\{y_n\} \) with \(N_0 < l < s \) such that

\[
y_l \leq 0, y_{s+1} \leq 0 \quad \text{and} \quad y_n > 0 \quad \text{for} \quad l + 1 \leq n \leq s. \quad (2.6)
\]

Let

\[
y_r = \max\{y_{l+1}, y_{l+2}, \ldots, y_s\} \quad (2.7)
\]
Global Attractivity in a Nonlinear Difference Equation

where \(y_r \) is chosen as the first one to reach the maximum among \(y_{l+1}, y_{l+2} \ldots y_r \). We claim that

\[
\begin{equation}
 r - (l + 1) \leq k.
\end{equation}
\]

Suppose, for the sake of contradiction, that \(r - (l + 1) > k \). Then, \(y_r > y_{r-1-k} \) > 0. By noting \(y_{r-1-k} + \bar{x} > \bar{x} \) and (2.1), we see that

\[
 g(y_{r-1-k} + \bar{x}) + f(y_{r-1-k} + \bar{x}) - (y_{r-1-k} + \bar{x}) < 0.
\]

Since \(f(x) - \bar{x} \) is decreasing,

\[
 f(y_{r-1-k} + \bar{x}) - (y_{r-1-k} + \bar{x}) > f(y_r + \bar{x}) - (y_r + \bar{x})
\]

and then it follows from (2.9) that

\[
 g(y_{r-1-k} + \bar{x}) + f(y_r + \bar{x}) - (y_r + \bar{x}) < 0.
\]

However, on the other hand, (2.5) yields

\[
 g(y_{r-1-k} + \bar{x}) + f(y_r + \bar{x}) - (y_{r-1-k} + \bar{x}) = f(y_r + \bar{x}) - f(y_r-1 + \bar{x}) \geq 0
\]

which contradicts (2.9). Hence, (2.8) holds.

Now, observe that

\[
 y_{n+1} - ay_n = f(y_n + \bar{x}) - f(\bar{x}) - ay_n + g(y_{n-k} + \bar{x}) - g(\bar{x})
\]

and so it follows that

\[
 \frac{y_{n+1}}{a^{n+1}} - \frac{y_n}{a^n} = \sum_{j=l}^{r-1} \frac{1}{a^j+1} [f(y_j + \bar{x}) - f(\bar{x}) - ay_j] + \sum_{j=l}^{r-1} \frac{1}{a^j+1}[g(y_{j-k} + \bar{x}) - g(\bar{x})].
\]

Summing up from \(l \) to \(r - 1 \), we see that

\[
 \frac{y_r}{a^r} - \frac{y_l}{a^l} = \sum_{j=l}^{r-1} \frac{1}{a^j+1} [f(y_j + \bar{x}) - f(\bar{x}) - ay_j] + \sum_{j=l}^{r-1} \frac{1}{a^j+1}[g(y_{j-k} + \bar{x}) - g(\bar{x})]
\]

and so

\[
 y_r = a^r \left(\frac{y_l}{a^l} + \sum_{j=l}^{r-1} \frac{1}{a^j+1} [f(y_j + \bar{x}) - f(\bar{x}) - ay_j] + \sum_{j=l}^{r-1} \frac{1}{a^j+1}[g(y_{j-k} + \bar{x}) - g(\bar{x})] \right)
\]

\[
 = a^r \left(\frac{y_l}{a^l} + \sum_{j=l}^{r-2} \frac{1}{a^j+1} [f(y_j + \bar{x}) - f(\bar{x}) - ay_j] + \sum_{j=l}^{r-2} \frac{1}{a^j+1}[f(y_j + \bar{x}) - f(\bar{x}) - ay_j]
\]

\[
 + \sum_{j=l}^{r-1} \frac{1}{a^j+1}[g(y_{j-k} + \bar{x}) - g(\bar{x})] \right)
\]

\[
 = a^r \left(\frac{1}{a^{l+1}}[f(y_l + \bar{x}) - f(\bar{x})] + \sum_{j=l}^{r-2} \frac{1}{a^j+1}[f(y_j + \bar{x}) - f(\bar{x}) - ay_j]
\]

\[
 + \sum_{j=l}^{r-1} \frac{1}{a^j+1}[g(y_{j-k} + \bar{x}) - g(\bar{x})] \right).
\]

(2.10)
Then by noting (2.6), \(f(x) \) is nondecreasing and \(f(x) - ax \) is nonincreasing, we see that \(f(y_l + \bar{x}) - f(\bar{x}) \leq 0 \) and \(f(y_j + \bar{x}) - f(\bar{x}) - ay_j \leq 0, \ j = l + 1, \ldots, r - 1. \) Hence, it follow from (2.10) that

\[
y_r \leq \alpha^r \sum_{j=1}^{r-1} \frac{1}{\alpha^{j+1}} |g(y_{j-k} + \bar{x}) - g(\bar{x})| \leq \left[\frac{1 - a^{k+1}}{1 - a} \right] LM
\]

and so

\[
y_n \leq \left[\frac{1 - a^{k+1}}{1 - a} \right] LM, \ l \leq n \leq s.
\]

Since \(y_l \) and \(y_s \) are two arbitrary members of the solution with property (2.6), we see that there is a positive integer \(N'_1 \geq N_0 \) such that \(y_n \leq \left[\frac{1 - a^{k+1}}{1 - a} \right] ML, n \geq N'_1. \) Then, by a similar argument, it can be shown that there is a positive integer \(N''_1 \geq N_0 \) such that \(y_n \geq -\left[\frac{1 - a^{k+1}}{1 - a} \right] ML, n \geq N''_1. \) Hence, there is a positive integer \(N_1 \geq N_0 \) such that

\[
|y_n| \leq \left[\frac{1 - a^{k+1}}{1 - a} \right] LM, n \geq N_1. \tag{2.11}
\]

Now, by noting the Lipschitz property of \(f(x) \) and (2.11), we see that

\[
|g(y_{n-k} + \bar{x}) - g(\bar{x})| \leq L|y_{n-k}| \leq \left[\frac{1 - a^{k+1}}{1 - a} \right] L^2 M, n \geq N_1 + k.
\]

Let \(y_l \) and \(y_s \) be two consecutive members of the solution \(\{y_n\} \) with \(t_0 \leq l < s \) such that (2.6) holds. Let \(y_r \) be defined by (2.7). By a similar argument, we may show that (2.8) holds and

\[
y_r \leq \left(\left[\frac{1 - a^{k+1}}{1 - a} \right] L \right)^2 M.
\]

Then it follows that \(y_n \leq \left[\frac{1 - a^{k+1}}{1 - a} \right] L^2 M, l \leq n \leq s \) and so again by noting \(y_l \) and \(y_s \) are two arbitrary members of the solution with property (2.6), there is a positive integer \(N'_2 \geq N_1 + k \) such that \(y_n \leq \left(\left[\frac{1 - a^{k+1}}{1 - a} \right] L \right)^2 M, n \geq N'_2. \) Similarly, it can be shown that there is a positive integer \(N''_2 \geq N_1 + K \) such that \(y_n \geq -\left(\left[\frac{1 - a^{k+1}}{1 - a} \right] L \right)^2 M, n \geq N''_2. \) Hence, there is a positive integer \(N_2 \geq N_1 + k \) such that \(|y_n| \leq \left(\left[\frac{1 - a^{k+1}}{1 - a} \right] L \right)^2 M, n \geq N_2. \) Finally, by induction, we find that for any positive integer \(m, \) there is a positive integer \(N_m \) with \(N_m \to \infty \) as \(m \to \infty \) such that

\[
|y_n| \leq \left(\left[\frac{1 - a^{k+1}}{1 - a} \right] L \right)^m M, n \geq N_m.
\]
Then, by noting the hypotheses \(\left[\frac{1 - a^{k+1}}{1 - a} \right] L < 1 \), we see that \(y_n \to 0 \) as \(n \to \infty \), and so it follows that \(x_n \to \bar{x} \) as \(n \to \infty \). The proof is complete.

3 Applications

Consider the difference equation

\[
x_{n+1} = \frac{ax_n^2}{b + x_n} + c \frac{e^{p-qx_{n-k}}}{1 + e^{p-qx_{n-k}}}, \quad n = 0, 1, \ldots, (3.1)
\]

where \(0 < a < 1, b, c, p \) and \(q \) are positive constants, and \(k \) is a nonnegative integer. Eq. (3.1) is in the form of (1.2) with

\[
f(x) = \frac{ax^2}{b + x} \quad \text{and} \quad g(x) = c \frac{e^{p-qx}}{1 + e^{p-qx}}.
\]

Clearly, \(f \) is increasing and \(f(x) \leq ax \). By noting

\[
(f(x) - ax)' = -\frac{ab^2}{(b + x)^2} < 0
\]

we see that \(f(x) - ax \) is decreasing. Let

\[
F(x) = \frac{ax^2}{b + x} + c \frac{e^{p-qx}}{1 + e^{p-qx}} - x.
\]

It is easy to check that \(F'(0) > 0, \lim_{x \to \infty} F(x) = -\infty \) and \(F'(x) < 0 \). Hence, there is a unique positive number \(\bar{x} \) such that \(F(\bar{x}) = 0 \), that is, Eq. (3.1) has a unique positive equilibrium \(\bar{x} \), and

\[
(x - \bar{x})(f(x) + g(x) - x) < 0, \quad x > 0 \quad \text{and} \quad x \neq \bar{x}.
\]

Now, observe that

\[
g'(x) = -cq \frac{e^{p-qx}}{(1 + e^{p-qx})^2} \quad \text{and} \quad g''(x) = cq^2 \frac{e^{p-qx}(1 - e^{p-qx})}{(1 + e^{p-qx})^3}.
\]

By noting that \(x = \frac{p}{q} \) is the only point such that \(g''(x) = 0 \), we see that \(|g'(x)| \) takes maximum when \(x = \frac{p}{q} \) and \(|g'(\frac{p}{q})| = \frac{cq}{4} \). Hence, \(g \) is \(L \)-Lipschitz with \(L = \frac{cq}{4} \). Then by Theorem 2.1, we have that following conclusion immediately.

Theorem 3.1. Assume that

\[
\left[\frac{1 - a^{k+1}}{1 - a} \right] \frac{cq}{4} < 1. \quad (3.2)
\]

Then every positive solution \(\{x_n\} \) of Eq. (3.1) tends to its positive equilibrium \(\bar{x} \) as \(n \to \infty \).
We claim that (3.2) is also a sufficient condition for the positive equilibrium \bar{x} to be globally asymptotically stable when $k = 0$ or $k = 1$. In fact, when $k = 0$, (3.2) reduces to $cq < 4$ and the linearized equation of (3.1) about the equilibrium \bar{x} is

$$x_{n+1} = \left(\frac{a\bar{x}^2 + 2ab\bar{x}}{(\bar{x} + b)^2} - cq \frac{e^{p-q\bar{x}}}{(1 + e^{p-q\bar{x}})^2}\right)x_n.$$ \hspace{1cm} (3.3)

It is obvious that

$$\frac{a\bar{x}^2 + 2ab\bar{x}}{(\bar{x} + b)^2} - cq \frac{e^{p-q\bar{x}}}{(1 + e^{p-q\bar{x}})^2} < 1$$

since

$$\frac{a\bar{x}^2 + 2ab\bar{x}}{(\bar{x} + b)^2} < \bar{x}^2 + 2b\bar{x} < 1.$$ \hspace{1cm} (3.4)

By noting $cq < 4$, we see that

$$cq \frac{e^{p-q\bar{x}}}{(1 + e^{p-q\bar{x}})^2} < 4 \frac{e^{p-q\bar{x}}}{(1 + e^{p-q\bar{x}})^2} \leq 1 \leq 1 + \frac{a\bar{x}^2 + 2ab\bar{x}}{(\bar{x} + b)^2}$$

and so

$$-1 < \frac{a\bar{x}^2 + 2ab\bar{x}}{(\bar{x} + b)^2} - cq \frac{e^{p-q\bar{x}}}{(1 + e^{p-q\bar{x}})^2}.$$ \hspace{1cm} (3.5)

Hence, it follows that

$$\left|\frac{a\bar{x}^2 + 2ab\bar{x}}{(\bar{x} + b)^2} - cq \frac{e^{p-q\bar{x}}}{(1 + e^{p-q\bar{x}})^2}\right| < 1$$

and so the zero solution of Eq. (3.3) is asymptotically stable. By the linearization stability theory, the equilibrium \bar{x} of Eq. (3.1) is locally asymptotically stable. Then by combining this fact and Theorem 3.1, we see that the equilibrium \bar{x} of Eq. (3.1) is globally asymptotically stable.

When $k = 1$, (3.2) reduces to $cq < \frac{4}{1 + a}$ and the linearized equation of (3.1) about the equilibrium \bar{x} is

$$x_{n+1} = \frac{a\bar{x}^2 + 2ab\bar{x}}{(\bar{x} + b)^2}x_n - cq \frac{e^{p-q\bar{x}}}{(1 + e^{p-q\bar{x}})^2}x_{n-1}.$$ \hspace{1cm} (3.6)

It is well known (see, for example [6]) for the linear equation

$$y_{n+1} + \alpha y_n + \beta y_{n-1} = 0,$$

where α and β are constants, a necessary and sufficient condition for the asymptotic stability is

$$|\alpha| < 1 + \beta < 2.$$
Hence, by noting that under the condition $cq < \frac{4}{1 + a}$,

$$\frac{a\bar{x}^2 + 2ab\bar{x}}{(\bar{x} + b)^2} < 1 + cq \frac{e^{p-q\bar{x}}}{(1 + e^{p-q\bar{x}})^2} < 1 + 4 \frac{e^{p-q\bar{x}}}{(1 + e^{p-q\bar{x}})^2} \leq 2,$$

we see that the zero solution of Eq. (3.4) is asymptotically stable. Then it follows that the equilibrium \bar{x} of Eq. (3.1) is locally asymptotically stable, which together with Theorem 3.1 implies that \bar{x} is globally asymptotically stable.

Remark 3.2. In particular, when $k = 0$, Eq. (3.1) reduces to the first order difference equation

$$x_{n+1} = \frac{ax_n^2}{b + x_n} + c \frac{e^{p-qx_n}}{1 + e^{p-qx_n}}, \quad n = 0, 1, \ldots$$ \hspace{1cm} (3.5)

which is a biological model mentioned in Section 1. It has been shown in [8] that if

$$cq < 2(1 - a),$$ \hspace{1cm} (3.6)

then the positive equilibrium \bar{x} of Eq. (3.5) is globally asymptotically stable. Clearly, our condition $cq < 4$ is a significant improvement of (3.6).

References

