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Abstract

The aim of this paper is to investigate the periodic behavior of three special
cases of the second-order rational difference equation

xn+1 =
α+ βxn + γxn−1

A+Bxn + Cxn−1

with non-negative real initial values. We address Open problem 2.9.4 given in the
book by M.R.S. Kulenovic, G. Ladas Dynamics of Second Order Rational Differ-
ence Equations, with open problems and conjectures (Chapmann and Hall/CRC,
2008) and provide some relevant results and ideas with regard to these three spe-
cial cases, whose solutions are either with period-two or converge to a period-two
solution.

AMS Subject Classifications: 39A10, 39A23.
Keywords: Rational difference equations, period-two solutions, convergence to period-
two solutions, dependence on initial conditions.

1 Introduction
In the monograph [5] the authors present results on the boundedness, global stability,
and periodicity of solutions of rational difference equations in the form

xn+1 =
α + βxn + γxn−1

A+Bxn + Cxn−1

, (1.1)
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where the parameters α, β, γ, A,B,C are non-negative real numbers and the initial con-
ditions x−1 and x0 are arbitrary non-negative real numbers such that

A+Bxn + Cxn−1 > 0 for all n ≥ 0.

The authors of [5] maintain that the results for (1.1) are of paramount importance in the
development of the basic theory of the global behaviour of solutions of non-linear dif-
ference equations of order greater than one. In [3] certain results on some special cases
of (1.1) are summarized, as well as some facts regarding third-order rational difference
equations whose forms are an extension of the form of equation (1.1) are stated.

In this paper we investigate the following open problem proposed by M.R.S. Kulen-
ovic and G. Ladas in [5].

Open problem 2.9.4. It is known that every positive solution of each of the follow-
ing three equations

xn+1 = 1 +
xn−1

xn
, n = 0, 1, 2, . . . , (1.2)

xn+1 =
1 + xn−1

1 + xn
, n = 0, 1, 2, . . . , (1.3)

xn+1 =
xn + 2xn−1

1 + xn
, n = 0, 1, 2, . . . , (1.4)

converges to solutions with (not necessarily prime) period-two:

. . . , ϕ, ψ, ϕ, ψ, . . . . (1.5)

In each case, determine ϕ and ψ in terms of the initial conditions x−1 and x0. Con-
versely, if . . . , ϕ, ψ, ϕ, ψ, . . . is a period-two solution for one of the equations (1.2) or
(1.3) or (1.4), determine all initial conditions (x−1, x0) ∈ (0;+∞)× (0;+∞) for which
the solution xn converges to the period solution (1.5).

In [2] Basu and Merino showed that all solutions of (1.1) converge to the positive
equilibrium or to a prime period-two solution. Many authors have investigated the be-
havior (boundedness, periodicity, stability) of solutions of difference equations that are
similar to (1.2), e.g., in [8] Stevic studied the equation

xn+1 = α +
xn−1

xn
, n = 0, 1, 2, . . . , (1.6)

where α is a negative number. In [1] Amleh, Grove, and Ladas investigated equation
(1.6) with α > 0. For α = 1 the following statements were obtained:

1. Suppose x−1 < x1. Then x−1 < x1 < x3 < . . . and x0 < x2 < x4 < . . . .

2. Suppose x−1 = x1. Then x−1 = x1 = x3 = . . . and x0 = x2 = x4 = . . . .

3. Suppose x−1 > x1. Then x−1 > x1 > x3 > . . . and x0 > x2 > x4 > . . . .
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In [4], [6] and [7] the nonautonomous difference equations, xn+1 = pn +
xn−1

xn
,

xn+1 = An +

(
xn−1

xn

)p

and xn+1 = An +
xpn−1

xqn
, respectively, were studied.

There are very few papers in which the solutions of some difference equation are
studied with respect to initial values, that is, how the solutions change if initial values
are changed or how to determine the solutions in terms of initial values. In [9] Sun and
Xi obtained a set of initial values such that the positive solutions of (1.2) converge to
the unique equilibrium x̄ = 2.

Equations (1.3) and (1.4) have not been investigated so widely as equation (1.2).
Nevertheless equations (1.2), (1.3) and (1.4) have similar properties that will be dis-
cussed in the sequel.

2 Basic Definitions and Theorems
In this section we recall some definitions and known results from [5] and [3] that will
be useful in the investigation of the behaviour of solutions of difference equations (1.2),
(1.3) and (1.4).

Let I be some interval of real numbers and let f : I × I → I be a continuously
differentiable function.

Definition 2.1. A point x̄ ∈ I is called an equilibrium point of equation

xn+1 = f(xn, xn−1), n = 0, 1, . . . (2.1)

if x̄ = f(x̄, x̄). That is, xn = x̄ is a solution of (2.1) for all n ≥ 0.

Definition 2.2. A solution {xn} of (2.1) is said to be periodic with period p if

xn+p = xn for all n ≥ −1. (2.2)

Definition 2.3. A solution {xn} of (2.1) is said to be periodic with prime period p, or a
p-cycle if it is periodic with period p and p is the least positive integer for which (2.2)
holds.

Definition 2.4. A solution {xn} of (2.1) is said to be eventually periodic with prime
period p if exists such integer N ≥ −1 that sequence {xn}∞n=N is periodic with period
p, that is, xn+p = xn for all n ≥ N .

Let p =
∂f

∂u
(x̄, x̄) and q =

∂f

∂v
(x̄, x̄) denote the partial derivatives of f(u, v) evalu-

ated at the equilibrium x̄ of (2.1).

Theorem 2.5 (See [5, Theorem 1.1.1 (Linearized Stability)]). The following statements
are true:
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1. If both roots of the quadratic equation

λ2 − pλ− q = 0 (2.3)

lie in the open unit disk |λ| < 1, then the equilibrium x̄ of (2.1) is locally asymp-
totically stable.

2. If at least one of the roots of (2.3) has absolute value greater than one, then the
equilibrium x̄ of (2.1) is unstable.

3. A necessary and sufficient condition for a root of (2.3) to have absolute value
equal to one is

|p| = |1− q|
or

q = −1 and |p| ≤ 2.

In this case the equilibrium x̄ is called a nonhyperbolic point.

Theorem 2.6 (See [3, Theorem 1.6.6]). Let I be a set of real numbers and let f : I×I →
I be a function f(u, v) that decreases in u and increases in v. Then for every solution
{xn} of the (2.1), the subsequences x2n and x2n+1 do exactly one of the following:

1. They are both monotonically increasing.

2. They are both monotonically decreasing.

3. Eventually, one of them is monotonically increasing and the other is monotoni-
cally decreasing.

Let us consider a special case of (1.1) in the form

xn+1 =
α + βxn + γxn−1

A+Bxn
, (2.4)

where α, β, γ, A,B ∈ [0,∞) and C = 0 with α + β + γ,A + B ∈ (0,∞). The next
theorem gives necessary and sufficient conditions for (2.4) to have a prime period-two
solution and the formulas for this solution.

Theorem 2.7 (See [5, Theorem 2.7.1]). Assume B > 0. Then the following statements
hold:

1. Equation (2.4) has a prime period-two solution if and only if γ = β + A holds.

2. When γ = β + A holds, all period-two solutions

. . . , ϕ, ψ, ϕ, ψ, . . .

of (2.4) are given by the formulas:

ϕ >
β

B
, ϕ ̸=

β +
√
β2 + αβ

B
, and ψ =

α + βϕ

−β +Bϕ
. (2.5)
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3. When γ = β+A holds every solution of (2.4) converges to a period-two solution.

The importance of period two solutions is well known and has a great influence on
the behavior of solutions of difference equations. The cases when solutions with period
two exist are as follows:

1. Positive period two solutions on a hyperbola.

2. Positive period two solutions on a line (when all solutions are bounded for all
values of the parameters).

3. Positive unique period two solutions.

4. Period two solutions when one of the initial conditions is 0.

3 Results
An important tool to investigate the behaviour of difference equations is the linearized
stability theorem (see Theorem 2.5). First of all, using equation x̄ = f(x̄, x̄) we deter-
mine the following equilibrium points: x̄ = 2 for (1.2); x̄ = 1 for (1.3); x̄ = 0 and
x̄ = 2 for (1.4). Secondly, we obtain characteristic equations about the equilibrium
points and find the roots of these quadratic equations:

1. for (1.2), about the equilibrium point x̄ = 2 we obtain λ1 = −1 and λ2 =
1

2
;

2. for (1.3), about the equilibrium point x̄ = 1 we obtain λ1 = −1 and λ2 =
1

2
;

3. for (1.4),

(a) about the equilibrium point x̄ = 0 we have λ1 = −1 and λ2 = 2;

(b) about the equilibrium point x̄ = 2 we have λ1 = −1 and λ2 =
2

3
.

By Theorem 2.5, we deduce that the equilibrium point x̄ = 0 is unstable; in all other
cases it is not known whether the equilibrium points are stable or not.

Since all the characteristic equations have a root equal to −1, we obtain the follow-
ing general theorem.

Theorem 3.1. When C = 0 and γ = β+A hold in (1.1), then roots of the characteristic
equation of the linearized equation λ2 − pλ− q = 0 are given by the formulas

λ1 = −1, λ2 = 1 +
βA− αB −Bγx̄

(A+Bx̄)2
∈ (0, 1),

where x̄ is a positive equilibrium point of equation (2.4).
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Proof. Since γ = β +A, we obtain that the equilibrium equation of (2.4) is in the form

Bx̄2 − 2βx̄− α = 0. (3.1)

The only positive equilibrium of equation (2.4) is x̄ =
β +

√
β2 +Bα

B
and the lin-

earized equation associated with equation (2.4) about x̄ is

yn+1 =
βA−Bα−Bγx̄

(A+Bx̄)2
yn +

γ

A+Bx̄
yn−1, n = 0, 1, . . . . (3.2)

The characteristic equation of (3.2) is

λ2 − βA−Bα−Bγx̄

(A+Bx̄)2
λ− γ

A+Bx̄
= 0. (3.3)

Since it is difficult to calculate the roots of quadratic equation (3.3), we check whether
equation (3.3) has a root λ = −1:

0 = 1 +
βA−Bα−Bγx̄

(A+Bx̄)2
− γ

A+Bx̄
⇐⇒

0 = (A+Bx̄)2 + (βA−Bα−Bγx̄)− γA−Bγx̄⇐⇒
0 = A2 + 2ABx̄+B2x̄2 + βA−Bα− 2B(A+ β)x̄− (A+ β) ⇐⇒
0 = B2x̄2 − 2Bβx̄−Bα ⇐⇒
0 = Bx̄2 − 2βx̄− α.

The last equality is correct because it is the equilibrium equation (3.1). Hence λ1 = −1
is a root of equation (3.3). Since one root of the quadratic equation is negative and the
multiplication of both roots is − γ

A+Bx̄
< 0, using Vieta’s theorem we deduce that

λ2 =
γ

A+Bx̄
> 0 and λ1 + λ2 =

βA−Bα−Bγx̄

(A+Bx̄)2
. Hence

λ2 = 1 +
βA− αB −Bγx̄

(A+Bx̄)2
.

Now we show that the numerator βA− αB −Bγx̄ is negative:

βA− αB −Bγx̄ = βA− αB −B(β + A)
β +

√
β2 +Bα

B

= βA− αB − (β + A)(β +
√
β2 +Bα)

= −αB − β2 − (β + A)
√
β2 +Bα < 0.

This completes the proof that 0 < λ2 < 1.
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Open Problem. Show whether or not some connection between (1.1) having a
characteristic root of λ = −1 and (1.1) having period-two solutions.

Since B > 0, we can use Theorem (2.7) to obtain the following period-two solu-
tions:

1. for (1.2) and (1.4) the period-two solution is

. . . , ϕ, ψ =
ϕ

ϕ− 1
, ϕ, ψ =

ϕ

ϕ− 1
, . . . ;

2. for (1.3) the period-two solution is

. . . , ϕ, ψ =
1

ϕ
, ϕ, ψ =

1

ϕ
, . . . .

Observe that if x−1 = ϕ and x0 =
1

ϕ
, then the solution of (1.3) is periodic with period

two:
. . . ϕ,

1

ϕ
, ϕ,

1

ϕ
, . . . .

However, we note the following.

Theorem 3.2. There are no solutions of (1.3) that are eventually periodic with period
two with the form

. . . ϕ,
1

ϕ
, ϕ,

1

ϕ
, . . . .

Proof. Suppose to the contrary that there exists k such that x2k = α ̸= ϕ and x2k+1 =

β ̸= 1

ϕ
that x2k+2 = ϕ and x2k+3 =

1

ϕ
. Now we express α and β in terms of ϕ:

x2k+2 =
1 + α

1 + β
= ϕ, x2k+3 =

1 + β

1 + ϕ
=

1

ϕ
. (3.4)

From (3.4), we obtain that α = ϕ and β =
1

ϕ
which leads to a contradiction with

the assumption. Thus there are no initial conditions such that the solution of (1.3) is
eventually periodic with period two.

Remark 3.3. Similarly, one can show that there are no initial conditions such that the
solution of (1.2) or (1.4) is eventually periodic with period two.

For (1.2) and (1.3) the function f(xn, xn−1) is decreasing after the argument xn and
increasing after the argument xn−1. The function f(xn, xn−1) is not decreasing in the
argument xn for equation (1.4) in general. However, if x−1 > 1 and x0 > 1, one has
xn > 1 for all n ≥ −1 in the equation (1.4), and the function f(xn, xn−1) is decreasing
in the argument xn. Using Theorem 2.6 we obtain the following theorems and prove
that the statements mentioned in Theorem 2.6 are fulfilled for the equation (1.4) for all
positive values of the initial conditions.
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Theorem 3.4. The following statements are true.

1. If x−1 · x0 > 1, then both subsequences x2n and x2n+1 of the solution of (1.3) are
monotonically decreasing.

2. If x−1 · x0 < 1, then both subsequences x2n and x2n+1 of the solution of (1.3) are
monotonically increasing.

3. If x−1 · x0 = 1, then the solution of (1.3) is . . . , x−1,
1

x−1

, x−1,
1

x−1

, . . . .

Proof. We give the prove of Statement 1; the other proofs are similar. Suppose x−1·x0 >
1. Since initial conditions x−1 and x0 are positive numbers, the inequalities x−1 >

1

x0

and x0 >
1

x−1

hold. Using the given recurrence relation (1.3) we calculate x1:

x1 =
1 + x−1

1 + x0
<

1 + x−1

1 + 1
x−1

=
(1 + x−1) · x−1

1 + x−1

= x−1.

Similarly we calculate x2 in terms of x−1 and x0:

x2 =
1 + x0
1 + x1

=
1 + x0

1 + 1+x−1

1+x0

=
(1 + x0)

2

x0 + 2 + x−1

<
(1 + x0)

2

x0 + 2 + 1
x0

=
x0 · (1 + x0)

2

x20 + 2x0 + 1
= x0.

Next, we verify that x1 · x2 > 1:

x1 · x2 =
1 + x−1

1 + x0
· (1 + x0)

2

x0 + 2 + x−1

=
(1 + x−1)(1 + x0)

x0 + 2 + x−1

=
1 + x−1 + x0 + x−1 · x0

x0 + 2 + x−1

>
1 + x−1 + x0 + 1

x0 + 2 + x−1

= 1.

It follows, by induction, that

x−1 > x1 > x3 > · · · > x2n+1 > . . .

x0 > x2 > x4 > · · · > x2n > . . . ,

that is, both subsequences x2n and x2n+1 of the solution of (1.3) are monotonically
decreasing.

The behavior of solutions of (1.3) when x−1 · x0 > 1 are represented graphically in
Figure 3.1, where on the horizontal axis we mark values of the odd terms of solution
sequence and on the vertical axis – values of the even terms. Thus for every pair of
initial conditions x−1 and x0 we obtain the following sequence of points forming the
trajectory of the resulting solution:

(x−1;x0), (x1;x2), (x3;x4), . . . . (3.5)
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Figure 3.1: Behavior of solution subsequences of (1.3) when x−1 · x0 > 1.

Each trajectory is depicted in Figure 3.1 as a sequence of arrows connecting the

points in (3.5). The bold line in Figure 3.1 is the curve ψ =
1

ϕ
and represents all period-

two solutions. Since x−1 ·x0 > 1, then by Theorem 3.4, the trajectories begin above the
bold curve and are decreasing towards it.

Theorem 3.5. The following statements are true.

1. If x−1 · x0 > x−1 + x0, then both subsequences x2n and x2n+1 of the solution of
(1.2) and (1.4) are monotonically decreasing.

2. If x−1 · x0 < x−1 + x0, then both subsequences x2n and x2n+1 of the solution of
(1.2) and (1.4) are monotonically increasing.

3. If x−1 · x0 = x−1 + x0, then the solution of (1.2) and (1.4) is

. . . , x−1,
x−1

x−1 − 1
, x−1,

x−1

x−1 − 1
, . . . .

Proof. We prove Statement 2 for equation (1.4); the other proofs are similar. Suppose
x−1 · x0 < x−1 + x0. Using the given recurrence relation (1.4) we calculate x1:

x1 =
x0 + 2x−1

1 + x0
=
x0 + x−1 + x−1

1 + x0
>
x−1 · x0 + x−1

1 + x0
=
x−1(1 + x0)

1 + x0
= x−1.

Similarly we calculate x2 in terms of x−1 and x0:

x2 =
x1 + 2x0
1 + x1

=
x0 + 2x−1 + 2x0 + 2x20

1 + 2x0 + 2x−1

>
x0 + 2x−1 · x0 + 2x20

1 + 2x0 + 2x−1

=
x0(1 + 2x−1 + 2x0)

1 + 2x0 + 2x−1

= x0.
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Figure 3.2: Graphs of functions ψ =
ϕ

ϕ− 1
and ψ =

1

ϕ

Next, we verify that x1 · x2 < x1 + x2:

x0 + 2x−1

1 + x0
· x1 + 2x0

1 + x1
<
x0 + 2x−1

1 + x0
+
x1 + 2x0
1 + x1

⇐⇒

(x0 + 2x−1)(x1 + 2x0) < (x0 + 2x−1)(1 + x1) + (x1 + 2x0)(1 + x0) ⇐⇒
4x0x−1 < 3x0 + 2x−1 + x1(1 + x0) ⇐⇒

4x0x−1 < 3x0 + 2x−1 +
x0 + 2x−1

1 + x0
(1 + x0) ⇐⇒

4x0x−1 < 3x0 + 2x−1 + x0 + 2x−1 ⇐⇒
x0x−1 < x0 + x−1.

It follows by induction that

x−1 < x1 < x3 < · · · < x2n+1 < . . . ,

x0 < x2 < x4 < · · · < x2n < . . . ,

that is, both subsequences x2n and x2n+1 of the solution of (1.4) are monotonically
increasing. The proof for equation (1.2) is similar.

Remark 3.6. To obtain a period two solution for equations (1.2) and (1.4) it is necessary
that x−1 > 1 and x0 > 1.

Corollary 3.7. If a point (x−1;x0) is above (below) the graph of the function ψ =
ϕ

ϕ− 1
(see Figure 3.2(a)), then point sequences (3.5) are decreasing (increasing) for equations
(1.2) and (1.4).

Corollary 3.8. If a point (x−1; x0) is above (below) the graph of the function ψ =
1

ϕ
(see Figure 3.2(b)), then point sequences (3.5) are decreasing (increasing) for equation
(1.3).
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4 Some Numerical Examples and Hypothesis
Now we consider the difference equation (1.3) and the case when x−1 = x0 = a. Then

x1 = 1

x2 =
1 + a

2

x3 =
4

a+ 3

x4 =
a2 + 6a+ 9

2a+ 14

x5 =
2a2 + 28a+ 98

a3 + 11a2 + 47a+ 69

x6 =
(a2 + 8a+ 23)(a3 + 11a2 + 47a+ 69)

(2a+ 14)(a3 + 13a2 + 75a+ 167)
=

a5 + P4(a)

2a4 + P3(a)

x7 =
2a7 + P6(a)

a8 + P7(a)

x8 =
a13 + P12(a)

2a12 + P11(a)

x9 =
2a20 + P19(a)

a21 + P20(a)
. . .

x2n−1 =
2ak + Pk−1(a)

ak+1 + Pk(a)

x2n =
am+1 + Pm−1(a)

2am + Pm(a)
.

We denote a polynomial of order n as Pn(a). We can observe that, for sufficiently large

values of a the solution of (1.3) converges to a period-two solution that is close
{
a

2
,
2

a

}
.

Numerical calculations show that for sufficiently large values of a, the solution of (1.3)

appears to converge to a period-two solution
{
a− 1

2
,

2

a− 1

}
(as it is seen in Figure 4.1

for large values of a points lie on a straight line).
Similar relationships can be obtained for the following:

1. Equation (1.2)

x2n−1 =
ak + Pk−1(a)

ak + P ′
k−1(a)

, x2n =
am + Pm−1(a)

2am−1 + Pm−2(a)
.

Numerical calculations show that, for sufficiently large values of a, the solution
of (1.2) appears to converge to a period-two solution

{
1,
a

2

}
(see Figure 4.2).
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Figure 4.1: Numerical results for equation (1.3) where initial values are x−1 = x0 = a
and n is large

Figure 4.2: Numerical results for equations (1.2) and (1.4) where initial values are
x−1 = x0 = a and n is large

2. Equation (1.4)

x2n−1 =
ak + Pk−1(a)

ak + P ′
k−1(a)

, x2n =
am + Pm−1(a)

2am−1 + Pm−2(a)
.

The calculations show that for sufficiently large values of a the solution of (1.4)
converges to a period-two solution

{
1,
a

2
− 0.88

}
(see Figure 4.2).

If x0 >> x−1, then using numerical calculations (see Figure 4.3) we can hypothesize

that the solutions of (1.3) converge to the period-two solution x0 − x−1 and
1

x0 − x−1

.
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Figure 4.3: Numerical calculations for (1.3)
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