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Abstract

The goal of this paper is to study the boundedness, the persistence and the
asymptotic behavior of the positive solutions of the system of two difference equa-
tions of exponential form:

xn+1 =
a + be−xn

c + yn
, yn+1 =

a + be−yn

c + xn

where a, b, c are positive constants and the initial values x0, y0 are positive real
values. Also, we determine the rate of convergence of a solution that converges to
the equilibrium E = (x̄, ȳ) of this system.

AMS Subject Classifications: 39A10.
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1 Introduction
In [10], the authors studied the boundedness, the asymptotic behavior, the periodicity
and the stability of the positive solutions of the difference equation:

yn+1 =
α + βe−yn

γ + yn−1

where α, β, γ are positive constants and the initial values y−1, y0 are positive numbers.
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Motivated by the above paper, we will investigate the boundedness, the persistence
and the asymptotic behavior of the positive solutions of the following system of expo-
nential form:

xn+1 =
a+ be−xn

c+ yn
, yn+1 =

a+ be−yn

c+ xn
(1.1)

where a, b, c are positive constants and the initial values x0, y0 are positive real values.
Difference equations and systems of difference equations of exponential form can

be found in the following papers: [1, 3–5, 7]. Moreover, as difference equations have
many applications in applied sciences, there are many papers and books that can be
found concerning the theory and applications of difference equations, see [2, 6, 9] and
the references cited therein.

2 Global Behavior of Solutions of the System
In the first lemma we study the boundedness and persistence of the positive solutions of
(1.1).

Lemma 2.1. Every positive solution of (1.1) is bounded and persists.

Proof. Let (xn, yn) be an arbitrary solution of (1.1). From (1.1), we can see that

xn ≤
a+ b

c
, yn ≤

a+ b

c
, n = 1, 2, . . . (2.1)

In addition, from (1.1) and (2.1) we get

xn ≥
a+ be−

a+b
c

c+ a+b
c

, yn ≥
a+ be−

a+b
c

c+ a+b
c

, n = 2, 3, . . . (2.2)

Therefore, from (2.1) and (2.2) the proof of lemma is complete.

In order to prove the main result of this section, we recall the next theorem without
its proof. See [11] and [12].

Theorem 2.2. LetR = [a1, b1]× [c1, d1] and

f : R −→ [a1, b1], g : R −→ [c1, d1]

be a continuous functions such that:

(a) f(x, y) is decreasing in both variables and g(x, y) is decreasing in both variables
for each (x, y) ∈ R;
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(b) If (m1,M1,m2,M2) ∈ R2 is a solution of{
M1 = f(m1,m2), m1 = f(M1,M2),

M2 = g(m1,m2), m2 = g(M1,M2),
(2.3)

then m1 = M1 and m2 = M2.

Then the system of difference equations

xn+1 = f(xn, yn), yn+1 = g(xn, yn) (2.4)

has a unique equilibrium (x̄, ȳ) and every solution (xn, yn) of the system (2.4) with
(x0, y0) ∈ R converges to the unique equilibrium (x̄, ȳ). In addition, the equilibrium
(x̄, ȳ) is globally asymptotically stable.

Now we state the main theorem of this section.

Theorem 2.3. Consider system (1.1). Suppose that the following relation holds true:

b < c. (2.5)

Then system (1.1) has a unique positive equilibrium (x̄, ȳ) and every positive solution
of (1.1) tends to the unique positive equilibrium (x̄, ȳ) as n → ∞. In addition, the
equilibrium (x̄, ȳ) is globally asymptotically stable.

Proof. We consider the functions

f(u, v) =
a+ be−u

c+ v
, g(u, v) =

a+ be−v

c+ u
(2.6)

where

u, v ∈ I =

[
a+ be−

a+b
c

c+ a+b
c

,
a+ b

c

]
. (2.7)

It is easy to see that f(u, v), g(u, v) are decreasing in both variables for each (u, v) ∈
I×I . In addition, from (2.6) and (2.7) we have f(u, v) ∈ I , g(u, v) ∈ I as (u, v) ∈ I×I
and so f : I × I −→ I , g : I × I −→ I .

Now let m1,M1,m2,M2 be positive real numbers such that

M1 =
a+ be−m1

c+m2

, M2 =
a+ be−m2

c+m1

, m1 =
a+ be−M1

c+M2

, m2 =
a+ be−M2

c+M1

. (2.8)

Moreover arguing as in the proof of Theorem.2.2, it suffices to assume that

m1 ≤M1, m2 ≤M2. (2.9)
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From (2.8), we get

be−m1 = (c+m2)M1 − a, be−M1 = (c+M2)m1 − a,
be−m2 = (c+m1)M2 − a, be−M2 = (c+M1)m2 − a.

(2.10)

which imply that

c(M1 −m1) +M1m2 −M2m1 = b(e−m1 − e−M1) = be−m1−M1(eM1 − em1),

c(M2 −m2) +M2m1 −M1m2 = b(e−m2 − e−M2) = be−m2−M2(eM2 − em2).
(2.11)

Moreover, we get

eM1 − em1 = eα(M1 −m1), m1 ≤ α ≤M1,

eM2 − em2 = eβ(M2 −m2), m2 ≤ β ≤M2.
(2.12)

Then by adding the two relations (2.11) we obtain

c(M1−m1)+c(M2−m2) = be−m1−M1+α(M1−m1)+be−m2−M2+β(M2−m2). (2.13)

Therefore from (2.13) we have

(M1 −m1)(c− be−m1−M1+α) + (M2 −m2)(c− be−m2−M2+β) = 0. (2.14)

Then using (2.5), (2.9) and (2.14), gives us m1 = M1 and m2 = M2. Hence from
Theorem.2.2 system (1.1) has a unique positive equilibrium (x̄, ȳ) and every positive
solution of (1.1) tends to the unique positive equilibrium (x̄, ȳ) as n→∞. In addition,
the equilibrium (x̄, ȳ) is globally asymptotically stable. This completes the proof of the
theorem.

3 Rate of Convergence
In this section we give the rate of convergence of a solution that converges to the equi-
librium E = (x̄, ȳ) of the systems (1.1) for all values of parameters. The rate of
convergence of solutions that converge to an equilibrium has been obtained for some
two-dimensional systems in [13] and [14].

The following results give the rate of convergence of solutions of a system of differ-
ence equations

xn+1 = [A+B(n)]xn (3.1)

where xn is a k-dimensional vector, A ∈ Ck×k is a constant matrix, and B : Z+ −→
Ck×k is a matrix function satisfying

‖B(n)‖ → 0 when n→ ∞, (3.2)

where ‖.‖ denotes any matrix norm which is associated with the vector norm; ‖.‖ also
denotes the Euclidean norm in R2 given by

‖x‖ = ‖(x, y)‖ =
√
x2 + y2. (3.3)
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Theorem 3.1 (See [15]). Assume that condition (3.2) holds. If xn is a solution of system
(3.1), then either xn = 0 for all large n or

ρ = lim
n→∞

n
√
‖xn‖ (3.4)

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Theorem 3.2 (See [15]). Assume that condition (3.2) holds. If xn is a solution of system
(3.1), then either xn = 0 for all large n or

ρ = lim
n→∞

‖xn+1‖
‖xn‖

(3.5)

exists and is equal to the modulus of one of the eigenvalues of matrix A.

The equilibrium point of the system (1.1) satisfies the following system of equations
x̄ =

a+ be−x̄

c+ ȳ

ȳ =
a+ be−ȳ

c+ x̄

. (3.6)

We can easily see that the system (3.6) has an unique equilibrium E = (x̄, x̄).
The map T associated to the system (1.1) is

T (x, y) =

(
f(x, y)
g(x, y)

)
=

a+ be−x

c+ y
a+ be−y

c+ x

 . (3.7)

The Jacobian matrix of T is

JT =


−be−x

c+ y

−(a+ be−x)

(c+ y)2

−(a+ be−y)

(c+ x)2

−be−y

c+ x

 . (3.8)

By using the system (3.6), value of the Jacobian matrix of T at the equilibrium point
E = (x̄, ȳ) = (x̄, x̄) is

JT =


−be−x̄

c+ x̄

−(a+ be−x̄)

(c+ x̄)2

−(a+ be−x̄)

(c+ x̄)2

−be−x̄

c+ x̄

 . (3.9)

Our goal in this section is to determine the rate of convergence of every solution of the
system (1.1) in the regions where the parameters a, b, c ∈ (0,∞), (b < c) and initial
conditions x0 and y0 are arbitrary, nonnegative numbers.
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Theorem 3.3. The error vector en =

(
e1
n

e2
n

)
=

(
xn − x̄
yn − ȳ

)
of every solution xn 6= 0 of

(1.1) satisfies both of the following asymptotic relations:

lim
n→∞

n
√
‖en‖ = |λi(JT (E))| for some i = 1, 2, (3.10)

and

lim
n→∞

‖en+1‖
‖en‖

= |λi(JT (E))| for some i = 1, 2, (3.11)

where |λi(JT (E))| is equal to the modulus of one of the eigenvalues of the Jacobian
matrix evaluated at the equilibrium JT (E).

Proof. First, we will find a system satisfied by the error terms. The error terms are given
as

xn+1 − x̄ =
a+ be−xn

c+ yn
− a+ be−x̄

c+ ȳ
=

(a+ be−xn)(c+ ȳ)− (a+ be−x̄)(c+ yn)

(c+ yn)(c+ ȳ)

=
bc(e−xn − e−x̄) + a(ȳ − yn) + b(e−xn ȳ − e−x̄yn)

(c+ yn)(c+ ȳ)

=
−bc(exn − ex̄)

exn+x̄(c+ yn)(c+ ȳ)
+

b

(c+ yn)(c+ ȳ)
(e−xn ȳ − e−xnyn + e−xnyn − e−x̄yn)

− a

(c+ yn)(c+ ȳ)
(yn − ȳ)

=
−bc

exn+x̄(c+ yn)(c+ ȳ)
(exn − ex̄) +

byn
exn+x̄(c+ yn)(c+ ȳ)

(exn − ex̄)

− a+ be−xn

(c+ yn)(c+ ȳ)
(yn − ȳ)

=
−b

exn+x̄(c+ ȳ)
(exn − ex̄)− a+ be−xn

(c+ yn)(c+ ȳ)
(yn − ȳ)

=
−bex̄

exn+x̄(c+ ȳ)
(exn−x̄ − 1)− a+ be−xn

(c+ yn)(c+ ȳ)
(yn − ȳ)

=
−b

exn(c+ ȳ)

[
(xn − x̄) +O1

(
(xn − x̄)2

)]
− a+ be−xn

(c+ yn)(c+ ȳ)
(yn − ȳ)

=
−b

exn(c+ ȳ)
(xn − x̄)− a+ be−xn

(c+ yn)(c+ ȳ)
(yn − ȳ) +O1

(
(xn − x̄)2

)
.

(3.12)
By calculating similarly, we get

yn+1 − ȳ =
−b

eyn(c+ x̄)
(yn − ȳ)− a+ be−yn

(c+ xn)(c+ x̄)
(xn − x̄) +O2

(
(yn − ȳ)2

)
.

(3.13)
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From (3.12) and (3.13) we have

xn+1 − x̄ ≈
−b

exn(c+ ȳ)
(xn − x̄)− a+ be−xn

(c+ yn)(c+ ȳ)
(yn − ȳ)

yn+1 − ȳ ≈
−b

eyn(c+ x̄)
(yn − ȳ)− a+ be−yn

(c+ xn)(c+ x̄)
(xn − x̄).

(3.14)

Set
e1
n = xn − x̄ and e2

n = yn − ȳ.

Then system (3.14) can be represented as

e1
n+1 ≈ ane

1
n + bne

2
n

e2
n+1 ≈ cne

1
n + dne

2
n

where

an =
−b

exn(c+ ȳ)
, bn = − a+ be−xn

(c+ yn)(c+ ȳ)
,

cn = − a+ be−yn

(c+ xn)(c+ x̄)
, dn =

−b
eyn(c+ x̄)

.

Taking the limits of an, bn, cn and dn as n→∞, we obtain

lim
n→∞

an =
−b

ex̄(c+ ȳ)
, lim
n→∞

bn = −a+ be−x̄

(c+ x̄)2
,

lim
n→∞

cn = −a+ be−x̄

(c+ x̄)2
, lim
n→∞

dn =
−b

ex̄(c+ x̄)
,

that is

an =
−b

ex̄(c+ ȳ)
+ αn, bn = −a+ be−x̄

(c+ x̄)2
+ βn,

cn = −a+ be−x̄

(c+ x̄)2
+ γn, dn =

−b
ex̄(c+ x̄)

+ δn,

where αn → 0, βn → 0, γn → 0 and δn → 0 as n→∞.
Now, we have system of the form (3.1):

en+1 = (A+B(n))en,

where A =


−be−x̄

c+ x̄

−(a+ be−x̄)

(c+ x̄)2

−(a+ be−x̄)

(c+ x̄)2

−be−x̄

c+ x̄

 , B(n) =

(
αn βn
δn γn

)
and

‖B(n)‖ → 0 as n→ ∞.
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Thus, the limiting system of error terms can be written as:(
e1
n+1

e2
n+1

)
= A

(
e1
n

e2
n

)
.

The system is exactly linearized system of (1.1) evaluated at the equilibrium E =
(x̄, ȳ) = (x̄, x̄). Then Theorem 3.1 and Theorem 3.2 imply the result.
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