
International Journal of Difference Equations
ISSN 0973-6069, Volume 8, Number 1, pp. 71–76 (2013)
http://campus.mst.edu/ijde

A Regularization Procedure for Solving some Singular
Integral Equations of the Second Kind

Abdelaziz Mennouni
Department of Mathematics

University of Bordj Bou-Arreridj, Algeria
aziz.mennouni@yahoo.fr

Abstract

We begin by proposing a regularization procedure for solving some singular
integral equations of the second kind. After that, we consider a projection method
to the regularized equation using a sequence of orthogonal finite rank projections.
We prove the convergence of the method and we perform an error analysis. We
end with some numerical examples illustrating the obtained theoretical results.
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1 Introduction and Mathematical Background
During the last two decades, physicists, engineers and mathematicians have shown a
strong interest for the theory and numerical modeling of singular integral equations
(see [3, 6, 10, 11]). Several problems of engineering physics are described in terms of
singular integral equations. In [1, 2, 4, 5], the authors have studied some finite rank
approximations using bounded finite rank projections. In [8], we have presented a pro-
jection method for solving operator equations with bounded operators in Hilbert spaces,
and we have applied the method for solving the Cauchy integral equations for two cases:
Galerkin projections and Kulkarni projections, using a sequence of orthogonal finite
rank projections. In [7] we have introduced a modified method, which is based on
trapezoidal and Simpson’s rules, for solving Volterra integral equations of the second
kind. In [9], we have studied projection approximations for solving Cauchy integro-
differential equations using airfoil polynomials of the first kind. Projection methods
play an important role in numerical analysis. In particular, they are an effective means of
numerically solving integral and integro-differential equations. The goal of the present
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paper is to introduce a regularization procedure for solving some singular integral equa-
tions of the second kind.

Denote by H := L2([−1, 1],C) the space of complex-valued Lebesgue square in-
tegrable (classes of) functions on [−1, 1]. Let the universe under consideration be the
spaceH and consider a generalized integral equation with Cauchy kernel,∫ 1

−1
− k(s, τ)x(τ)

τ − s
dτ = zϕ(s) + f(s), −1 ≤ s ≤ 1, (1.1)

where z is real and nonzero. We assume that k is continuous and

k(s, τ) = k(τ, s).

Let

Kx(s) :=

∫ 1

−1
− k(s, τ)x(τ)

τ − s
dτ, x ∈ H, −1 ≤ s ≤ 1.

We recall that K ∈ BL(H) and K∗ = −K. Equation (1.1) can be rewritten in operator
form as follows:

(K − zI)ϕ = f.

Theorem 1.1. For each right-hand side f ∈ H , the Cauchy integral equation (1.1) has
a unique solution ϕ ∈ H.

Proof. Since
k(s, τ) = k(τ, s),

it is clear that K is skew-Hermitian, hence sp (K) ⊆ iR. This shows that z /∈ sp (K),
and consequently the operator K − zI is invertible.

Theorem 1.2. The following estimate holds:

‖(K − zI)−1‖ ≤ 1

|z|
.

Proof. For all x ∈ H,

Re 〈(K − zI)x, x〉 =
1

2

[
〈(K − zI)x, x〉+ 〈(K − zI)x, x〉

]
=

1

2
[−2z 〈x, x〉+ 〈Kx, x〉+ 〈x,Kx〉]

= −z 〈x, x〉 ,

so that

|z| ‖x‖2 ≤ |Re 〈(K − zI)x, x〉| ≤ |〈(K − zI)x, x〉| ≤ ‖(K − zI)x‖ ‖x‖ ,

which yields

‖(K − zI)−1‖ ≤ 1

|z|
.

This concludes the proof.
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We define the regularized operator Kε for ε > 0 by

Kεϕ(s) :=

∫ 1

−1

(τ − s)k(s, τ)ϕ(τ)

(τ − s)2 + ε2
dτ, −1 < s < 1,

which is compact and skew-Hermitian fromH into itself. We denote by ϕε the solution
of the regularized integral equation

(Kε − zI)ϕε = f.

2 Numerical Approximation
Let (`n)n≥0 denote a sequence of Legendre polynomials and

ej :=

√
2j + 1

2
`j

be the corresponding normalized sequence. Let us consider (Πn)n≥1 a sequence of
bounded projections, each one of finite rank, such that

Πnx :=
n−1∑
j=0

〈x, ej〉 ej.

We recall that
lim
n→∞

‖Πnψ − ψ‖ = 0

for all ψ ∈ H. LetHn denote the space spanned by the first n of Legendre polynomials.
Consider the approximate operator

Kε,n := ΠnKεΠn.

Hence, the equation

Kε,nϕε,n − zϕε,n = Πnf (2.1)

has a unique solution ϕε,n given by

ϕε,n =
n∑
j=1

xn,jen,j

for some scalars xn,j . Equation (2.1) reads as

n∑
j=1

xn,j [ΠnKεen,j − zen,j] = Πnf,
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so that

n∑
j=1

xn,j

[
n∑
i=1

〈Kεen,j, en,i〉 en,i − zen,j

]
=

n∑
i=1

〈f, en,i〉 en,i,

that is, the coefficients xn,j are obtained by solving the linear system

(An,ε − zI)xn = bn,

where

An,ε(k, j) :=

√
2i+ 1

2

√
2j + 1

2

∫ 1

−1

∮ 1

−1

`j(τ)k(s, τ)

(τ − s)2 + ε2
dτds,

bn(k) :=

√
2k + 1

2

∫ 1

−1
`k(s)f(s)ds.

Theorem 2.1. The following estimate holds:

‖(Kε,n − zI)−1‖ ≤ 1

|z|
.

Proof. It is clear that Kε,n is skew-Hermitian, so that the proof is rather similar to the
proof of Theorem 1.1. This shows that for n large enough, the operator Kε,n − zI is
invertible and the constant sup

n
‖(Kε,n − zI)−1‖ is finite.

Theorem 2.2. The following estimate holds:

‖ϕε,n − ϕε‖2 ≤
1

|z|

[
‖(Πn − I)f‖2 + ‖(Πn − I)Kεϕε‖2 + ‖Kε‖ ‖(Πn − I)ϕε‖2

]
.

Proof. One has

ϕε,n − ϕε = (Kε,n − zI)−1Πnf − (Kε − zI)−1f

= (Kε,n − zI)−1Πnf − (Kε,n − zI)−1f

+ (Kε,n − zI)−1f − (Kε − zI)−1f

= (Kε,n − zI)−1(Πn − I)f

+ (Kε,n − zI)−1 [(Kε − zI)− (Kε,n − zI)] (Kε − zI)−1f

= (Kε,n − zI)−1 [(Πn − I)f + (Kε −Kε,n)ϕε] .

On the other hand, due to Theorem 2.1,

(Kε,n −Kε)ϕε = (Πn − I)Kεϕε + ΠnKε(Πn − I)ϕε.

We get the desired result because ‖Πn‖ = 1.
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n ‖ϕ− ϕn‖2
4 5.17e-2
5 3.78e-2
6 5.02e-3
7 1.91e-3
8 7.36e-4
9 3.67e-4

10 2.13e-4
11 8.19e-5
12 4.25e-5

Table 1: Numerical results

Theorem 2.3. The solution ϕε,n of the equation (2.1) converges to the solution ϕ of
equation (1.1) if, first, n→∞, and then ε→ 0.

Proof. We have
ϕε − ϕ = (Kε − zI)−1[K −Kε]ϕ.

Because ∥∥(Kε − zI)−1
∥∥ ≤ 1

|z|
,

it follows that
‖ϕε − ϕ‖2 ≤

1

|z|
‖(K −Kε)ϕ‖2 → 0 as ε→ 0.

Hence,
‖ϕε,n − ϕ‖2 ≤ ‖ϕε − ϕ‖2 + ‖ϕε,n − ϕε‖2 → 0,

if, first, n→∞, and then ε→ 0.

3 Numerical Results and Discussion
Consider the generalized integral equation with Cauchy kernel (1.1) with f such that

ϕ(s) = s2 + 1

and

k(s, t) = cos(s− t), z =
1

π
.

For the regularization process, take ε = 10−63. We present in Table 1 the corresponding
absolute errors for this example.
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