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1 Introduction
Let T be a time scale with a, σn(b) ∈ T. Given an interval J of R, we will use the
interval notation

JT = J ∩ T. (1.1)

We are concerned with determining values of λ (eigenvalues) for which there exist pos-
itive solutions for the system of dynamic equations

u∆(n)

(t)+λp(t)f(v(σ(t))) = 0, t ∈ [a, b]T,

v∆(n)

(t)+λq(t)g(u(σ(t))) = 0, t ∈ [a, b]T,
(1.2)
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satisfying the boundary conditions

u∆(i)

(a) = 0, 0 ≤ i ≤ n− 2, u(σn(b)) = 0,

v∆(j)

(a) = 0, 0 ≤ j ≤ n− 2, v(σn(b)) = 0,
(1.3)

where

(A1) f, g ∈ C([0,∞), [0,∞)),

(A2) p, q ∈ C([a, σ(b)]T, [0,∞)), and each does not vanish identically on any closed
subinterval of [a, σ(b)]T,

(A3) All of f0 := lim
x→0+

(f(x)/x), g0 := lim
x→0+

(g(x)/x),

f∞ := lim
x→∞

(f(x)/x) and g∞ := lim
x→∞

(g(x)/x) exist as positive real numbers.

The theory of dynamic equations on time scales (more generally, on measure chains)
was introduced in 1988 by Stefan Hilger in his PhD thesis (see [18, 19]). The theory
presents a structure where, once a result is established for a general time scale, then
special cases can be obtained by taking the particular time scale. If T = R, then we
have the result for differential equations. Choosing T = Z we immediately get the
result for difference equations. A great deal of work has been done since 1988, unifying
and extending the theories of differential and difference equations, and many results are
now available in the general setting of time scales and references therein.

On a larger scale, there has been a great deal of study focused on positive solutions of
boundary value problems for ordinary differential equations. Interest in such solutions
is high from a theoretical sense [11, 12, 15, 20, 31] and as applications for which only
positive solutions are meaningful [1,13,21,22]. These considerations are cast primarily
for scalar problems, but much attention has been given to boundary value problems for
systems of differential equations [16, 17, 27, 30, 32].

The main tool in this paper is an application of the Guo–Krasnosel’skii fixed point
theorem for operators leaving a Banach space cone invariant [12]. A Green function
plays a fundamental role in defining an appropriate operator on a suitable cone.

2 Preliminaries
By an interval we mean the intersection of the real interval with a given time scale. The
jump operators introduced on a time scale T may be connected or disconnected. To
overcome this topological difficulty, the concept of jump operators is introduced in the
following way. The operators σ and ρ from T to T, defined by σ(t)=Inf {s ∈ T : s > t}
and ρ(t)=Sup {s ∈ T : s < t} are called jump operators. If σ is bounded above and
ρ is bounded below, then we define σ(Max T)=Max T and ρ(Min T)=Min T. These
operators allow us to classify the points of time scale T. A point t ∈ T is said to be
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right-dense if σ(t) = t, left-dense if ρ(t) = t, right-scattered if σ(t) > t, left-scattered
if ρ(t) < t, isolated if ρ(t) < t < σ(t) and dense if ρ(t) = t = σ(t). The set Tk which
is derived from the time scale T as follows

Tκ =

{
T\(ρ(supT), supT] if supT <∞
T if supT =∞.

Finally, if f : T → R is a function, then we define the function fσ : T → R by
fσ(t) = f(σ(t)) for all t ∈ T.

Definition 2.1. Assume f : T → R is a function and let t ∈ Tκ. Then we define f∆(t)
to be the number (provided it exists) with the property that given any ε > 0, there exists
a neighborhood U of t such that

|[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|

for all s ∈ U . We call f∆(t) the delta (or Hilger) derivative of f at t.

If f is delta differentiable for every t ∈ Tκ we say that f : Tκ → R is delta
differentiable on T. If f and g are two delta differentiable functions at t, then fg is delta
differentiable at t and (fg)∆(t) = f(t)g∆(t) + f∆(t)gσ(t) = f∆(t)g(t) + fσ(t)g∆(t).

Definition 2.2. A function f : T→ R is called regulated provided its right-sided limits
exist (finite) at all right dense points in T and its left-sided limits exist (finite) at all
left-dense points in T.

Definition 2.3. Assume f : T → R is a regulated function. Any function F which is
pre-differentiable with region of differentiation D such that F∆(t) = f(t) holds for all
t ∈ D is called a pre-antiderivative of f . We define the indefinite integral of a regulated
function f by ∫

f(t)∆t = F (t) + C,

where C is an arbitrary constant and F is pre-antiderivative of f .

Definition 2.4. Let β be a real Banach space. A nonempty closed convex set κ is called
cone of β if it satisfies the following conditions:
(1). u ∈ β, σ ≥ 0, implies σu ∈ κ,
(2). u ∈ κ, −u ∈ κ implies u = 0.

Definition 2.5. Let X and Y be Banach spaces and T : X → Y . T is said to be
completely continuous, if T is continuous, and for each bounded sequence {xn} ⊂ X ,
{Txn} has a convergent subsequence.
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3 Green’s Function and Bounds
In this section, we state the well-known Guo–Krasnosel’skii fixed-point theorem which
we will apply to a completely continuous operator whose kernel, G(t, s), is the Green’s
function for

−y∆(n)

= 0, (3.1)

y∆(i)

(a) = 0, 0 ≤ i ≤ n− 2, y(σn(b)) = 0. (3.2)

Theorem 3.1. The Green’s function for the BVP (3.1), (3.2) is given by

G(t, s) =
1

(n− 1)!


n−1∏
i=1

(t− σi−1(a))(σn(b)− σi(s))
(σn(b)− σi−1(a))

, t ≤ s,

n−1∏
i=1

(t− σi−1(a))(σn(b)− σi(s))
(σn(b)− σi−1(a))

−
n−1∏
i=1

(t− σi(s)), σ(s) ≤ t.

Proof. It is easy to check that the BVP (3.1), (3.2) has only trivial solution. Let y(t, s)

be the Cauchy function for −y∆(n)

= 0, and be given by

y(t, s) =
−1

(n− 1)!

∫ t

σ(s)

∫ t

σ2(s)

· · ·
∫ t

σn−1(s)︸ ︷︷ ︸
(n−1) times

∆τ∆τ · · ·∆τ =
−1

(n− 1)!

n−1∏
i=1

(t− σi(s)).

For each fixed s ∈ [a, b], let u(·, s) be the unique solution of the BVP

−u∆(n)

(·, s) = 0,

u∆(i)

(a, s) = 0, 0 ≤ i ≤ n− 2 and u(σn(b), s) = −y(σn(b), s).

y(t, s) |t=σn(b)=
−1

(n− 1)!

n−1∏
i=1

(σn(b)− σi(s)).

Since

u1(t) = 1, u2(t) =

∫ t

a

∆τ, · · · , un(t) =

∫ t

a

∫ t

σ(a)

· · ·
∫ t

σn−2(a)︸ ︷︷ ︸
(n−1) times

∆τ∆τ · · ·∆τ

are the solutions of −u∆(n)

= 0,

u(t, s) = α1(s) · 1 + α2(s) ·
∫ t

a

∆τ + · · ·+ αn(s) ·
∫ t

a

∫ t

σ(a)

· · ·
∫ t

σn−2(a)︸ ︷︷ ︸
(n−1) times

∆τ∆τ · · ·∆τ.
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By using boundary conditions, u∆(i)

(a) = 0, 0 ≤ i ≤ n− 2, we have α1 = α2 = · · · =
αn−1 = 0. Therefore, we have

u(t, s) = αn

∫ t

a

∫ t

σ(a)

· · ·
∫ t

σn−2(a)︸ ︷︷ ︸
(n−1) times

∆τ∆τ · · ·∆τ = αn

n−1∏
i=1

(t− σi−1(a)).

Since
u(σn(b), s) = −y(σn(b), s),

it follows that

αn

n−1∏
i=1

(σn(b)− σi−1(a)) =
1

(n− 1)!

n−1∏
i=1

(σn(b)− σi(s)).

Thus

αn =
1

(n− 1)!

n−1∏
i=1

(σn(b)− σi(s))
(σn(b)− σi−1(a))

.

Hence G(t, s) has the form for t ≤ s,

G(t, s) =
1

(n− 1)!

n−1∏
i=1

(t− σi−1(a))(σn(b)− σi(s))
(σn(b)− σi−1(a))

.

For t ≥ σ(s), Gn(t, s) = y(t, s) + u(t, s). It follows that

G(t, s) =
1

(n− 1)!

n−1∏
i=1

(t− σi−1(a))(σn(b)− σi(s))
(σn(b)− σi−1(a))

− 1

(n− 1)!

n−1∏
i=1

(t− σi(s)).

This completes the proof.

Lemma 3.2. For (t, s) ∈ [a, σn(b)]T × [a, σ(b)]T, we have

G(t, s) ≤ G(σ(s), s). (3.3)

Proof. For a ≤ t ≤ s ≤ σn(b), we have

G(t, s) =
1

(n− 1)!

n−1∏
i=1

(t− σi−1(a))(σn(b)− σi(s))
(σn(b)− σi−1(a))

≤ 1

(n− 1)!

n−1∏
i=1

(σ(s)− σi−1(a))(σn(b)− σi(s))
(σn(b)− σi−1(a))

= G(σ(s), s).

Similarly, for a ≤ σ(s) ≤ t ≤ σn(b), we have G(t, s) ≤ G(σ(s), s). Thus, we have

G(t, s) ≤ G(σ(s), s), for all (t, s) ∈ [a, σn(b)]T × [a, σ(b)]T,

completing the proof.
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Lemma 3.3. Let I =
[σn(b) + 3a

4
,
3σn(b) + a

4

]
T
. For (t, s) ∈ I × [a, σ(b)]T, we have

G(t, s) ≥ 1

16n−1
G(σ(s), s). (3.4)

Proof. The Green’s function for the BVP (3.1), (3.2) as given in the Theorem 3.1, shows
that

G(t, s) > 0 on (a, σn(b))T × (a, σ(b))T. (3.5)

For a ≤ t ≤ s ≤ σn(b) and t ∈ I , we have

G(t, s)

G(σ(s), s)
=

n−1∏
i=1

(t− σi−1(a))(σn(b)− σi(s))
(σ(s)− σi−1(a))(σn(b)− σi(s))

≥
n−1∏
i=1

(t− σi−1(a))

(σn(b)− a)

≥ 1

4n−1
.

For a ≤ σ(s) ≤ t ≤ σn(b) and t ∈ I, we have

G(t, s)

G(σ(s), s)

=

∏n−1
i=1 (t− σi−1(a))(σn(b)− σi(s))−

∏n−1
i=1 (t− σi(s))(σn(b)− σi(a))∏n−1

i=1 (σ(s)− σi−1(a))(σn(b)− σi(s))

≥
∏n−1

i=1 (t− σi−1(a))(σn(b)− σi(s))−
∏n−1

i=1 (t− σi(s))(σn(b)− σi(a))∏n−1
i=1 (σn(b)− σi−1(a))(σn(b)− σi(s))

≥ [(σ(s)− a)(σ2(b)− t)]
∏n−1

i=2 (t− σi−1(a))(σn(b)− σi(s))∏n−1
i=1 (σn(b)− σi−1(a))(σn(b)− σi(a))

≥ 1

16n−1
.

Therefore
1

16n−1
G(σ(s), s) ≤ G(t, s).

This completes the proof.

We note that a pair (u(t), v(t)) is a solution of the eigenvalue problem (1.2), (1.3) if
and only if

u(t) = λ

∫ σ(b)

a

G(t, s)p(s)f
(
λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r
)

∆s,

a ≤ t ≤σn(b),

v(t) = λ

∫ σ(b)

a

G(t, s)q(s)g(u(σ(s)))∆s, a ≤ t ≤ σn(b).

(3.6)
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Values of λ for which there are positive solutions (positive with respect to a cone)
of (1.2), (1.3) will be determined via applications of the following fixed-point theorem
[24].

Theorem 3.4 (Krasnosel’skii). Let B be a Banach space, and let P ⊂ B be a cone in
B. Assume that Ω1 and Ω2 are open subsets of B with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

T : P ∩ (Ω2\Ω1)→ P (3.7)

be a completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then, T has a fixed point in P ∩ (Ω2\Ω1).

4 Positive Solutions in a Cone
In this section, we apply Theorem 3.4 to obtain solutions in a cone (i.e., positive solu-
tions) of (1.2), (1.3). Assume throughout that [a, σn(b)]T is such that

ξ = min

{
t ∈ T : t ≥ 3a+ σn(b)

4

}
,

ω = max

{
t ∈ T : t ≤ a+ 3σn(b)

4

}
;

(4.1)

both exist and satisfy

3a+ σn(b)

4
≤ ξ < ω ≤ a+ 3σn(b)

4
. (4.2)

Next, let τ ∈ [ξ, ω]T be defied by∫ ω

ξ

G(τ, s)p(s)∆s = max
t∈[ξ,ω]T

∫ ω

ξ

G(t, s)p(s)∆s. (4.3)

Finally, we define

l = min
s∈[a,σ(b)]T

G(σ(ω), s)

G(σ(s), s)
, (4.4)

and let

γ = min
{ 1

16n−1
, l
}
. (4.5)
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For our construction, let B =
{
x : [a, σn(b)]T → R

}
with supremum norm ‖x‖ =

sup{|x(t)| : t ∈ [a, σn(b)]T} and define a cone P ⊂ B by

P =
{
x ∈ B | x(t) ≥ 0, on [a, σn(b)]T, and x(t) ≥ γ‖x‖, for t ∈ [ξ, ω]T

}
. (4.6)

For our first result, define positive numbers L1 and L2 by

L1 : = max

{[
γ

∫ ω

ξ

G(τ, s)p(s)∆sf∞

]−1

,
[
γ

∫ ω

ξ

G(τ, s)q(s)∆sg∞

]−1
}
,

L2 : = min

{[∫ σ(b)

a

G(σ(s), s)p(s)∆sf0

]−1

,
[ ∫ σ(b)

a

G(σ(s), s)q(s)∆sg0

]−1
}
.

Theorem 4.1. Assume that conditions (A1)–(A3) are satisfied. Then, for each λ satis-
fying

L1 < λ < L2, (4.7)

there exists a pair (u, v) satisfying (1.2), (1.3) such that u(x) > 0 and v(x) > 0 on
(a, σn(b))T.

Proof. Let λ be as in (4.7), and let ε > 0 be chosen such that

max

{[
γ

∫ ω

ξ

G(τ, s)p(s)∆s(f∞ − ε)
]−1

,
[
γ

∫ ω

ξ

G(τ, s)q(s)∆s(g∞ − ε)
]−1

}
≤ λ,

λ ≤ min

{[∫ σ(b)

a

G(σ(s), s)p(s)∆s(f0 + ε)
]−1

,

[ ∫ σ(b)

a

G(σ(s), s)q(s)∆s(g0 + ε)
]−1
}
.

Define an integral operator T : P → B by

Tu(t) = λ

∫ σ(b)

a

G(t, s)p(s)f
(
λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r
)

∆s, u ∈ P .
(4.8)

By the remarks in Section 3, we seek suitable fixed points of T in the cone P .
Notice from (A1), (A2) and (3.5) that, for u ∈ P , Tu(t) ≥ 0 on [a, σn(b)]T. Also,

for u ∈ P , we have from (3.3) that

Tu(t) = λ

∫ σ(b)

a

G(t, s)p(s)f
(
λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r
)

∆s

≤ λ

∫ σ(b)

a

G(σ(s), s)p(s)f
(
λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r
)

∆s
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so that

‖Tu‖ ≤ λ

∫ σ(b)

a

G(σ(s), s)p(s)f
(
λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r
)

∆s.

Next, if u ∈ P , we have from (3.4), (4.5), and (4.8) that

min
t∈[ξ,ω]T

Tu(t)

= min
t∈[ξ,ω]T

λ

∫ σ(b)

a

G(t, s)p(s)f
(
λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r
)

∆s

≥ λγ

∫ σ(b)

a

G(σ(s), s)p(s)f
(
λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r
)

∆s

≥ γ‖Tu‖.

Consequently, T : P → P . Moreover, T is completely continuous by a typical applica-
tion of the Ascoli–Arzela Theorem.

Now, from the definitions of f0 and g0, there exists H1 > 0 such that

f(x) ≤ (f0 + ε)x and g(x) ≤ (g0 + ε)x, 0 < x ≤ H1.

Let u ∈ P with ‖u‖ = H1. We first have from (3.3) and choice of ε, for a ≤ s ≤ σ(b),
that

λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r))∆r ≤ λ

∫ σ(b)

a

G(σ(r), r)q(r)g(u(σ(r)))∆r

≤ λ

∫ σ(b)

a

G(σ(r), r)q(r)(g0 + ε)u(r)∆r

≤ λ

∫ σ(b)

a

G(σ(r), r)q(r)∆r(g0 + ε)‖u‖

≤ ‖u‖ = H1.

As a consequence, we next have from (3.4) and choice of ε, for a ≤ t ≤ σn(b), that

Tu(t) = λ

∫ σ(b)

a

G(t, s)p(s)f
(
λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r
)

∆s

≤ λ

∫ σ(b)

a

G(σ(s), s)p(s)(f0 + ε)λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r∆s

≤ λ

∫ σ(b)

a

G(σ(s), s)p(s)(f0 + ε)H1∆s

≤ H1 = ‖u‖.

So, ‖Tu‖ ≤ ‖u‖. If we set

Ω1 = {x ∈ B : ‖x‖ < H1},
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then
‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω1. (4.9)

Next, from the definitions of f∞ and g∞, there exists H2 > 0 such that

f(x) ≥ (f∞ − ε)x and g(x) ≥ (g∞ − ε)x, x ≥ H2.

Let

H2 = max
{

2H1,
H2

γ

}
.

Let u ∈ P and ‖u‖ = H2. Then,

min
t∈[ξ,ω]T

u(t) ≥ γ‖u‖ ≥ H2.

Consequently, from (3.4) and choice of ε, for a ≤ s ≤ σ(b), we have that

λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r ≥ λ

∫ ω

ξ

G(σ(s), r)q(r)g(u(σ(r)))∆r

≥ λ

∫ ω

ξ

G(τ, r)q(r)g(u(σ(r)))∆r

≥ λ

∫ ω

ξ

G(τ, r)q(r)(g∞ − ε)u(r)∆r

≥ γλ

∫ ω

ξ

G(τ, r)q(r)(g∞ − ε)∆r‖u‖

≥ ‖u‖ = H2.

So, we have from (3.4) and choice of ε that

Tu(τ) = λ

∫ σ(b)

a

G(τ, s)p(s)f
(
λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r
)
∆s

≥ λ

∫ σ(b)

a

G(τ, s)p(s)(f∞ − ε)λ
∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r∆s

≥ λ

∫ σ(b)

a

G(τ, s)p(s)(f∞ − ε)H2∆s

≥ γH2 > H2 = ‖u‖.

Hence, ‖Tu‖ ≥ ‖u‖. So if we set

Ω2 = {x ∈ B : ‖x‖ < H2},

then
‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω2. (4.10)
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Applying Theorem 3.4 to (4.9) and (4.10), we obtain that T has a fixed point u ∈
P ∩ (Ω2\Ω1). As such, and with v being defined by

v(t) = λ

∫ σ(b)

a

G(t, s)q(s)g(u(σ(s)))∆s,

(u, v) is a desired solution of (1.2), (1.3) for the given λ. The proof is complete.

Prior to our next result, we introduce another hypothesis.

(A4) g(0) = 0, and f is an increasing function.

We now define positive numbers L3 and L4 by

L3 : = max
{[
γ

∫ ω

ξ

G(τ, s)p(s)∆sf0

]−1

,
[
γ

∫ ω

ξ

G(τ, s)q(s)∆sg0

]−1}
,

L4 : = min
{[∫ σ(b)

a

G(σ(s), s)p(s)∆sf∞

]−1

,
[ ∫ σ(b)

a

G(σ(s), s)q(s)∆sg∞

]−1}
.

Theorem 4.2. Assume that conditions (A1)–(A4) are satisfied. Then, for each λ satis-
fying

L3 < λ < L4, (4.11)

there exists a pair (u, v) satisfying (1.2), (1.3) such that u(x) > 0 and v(x) > 0 on
(a, σn(b))T.

Proof. Let λ be as in (4.11), and let ε > 0 be chosen such that

max
{[
γ

∫ ω

ξ

G(τ, s)p(s)∆s(f0 − ε)
]−1

,
[
γ

∫ ω

ξ

G(τ, s)q(s)∆s(g0 − ε)
]−1}

≤ λ,

λ ≤ min
{[∫ σ(b)

a

G(σ(s), s)p(s)∆s(f∞ + ε)
]−1

,[ ∫ σ(b)

a

G(σ(s), s)q(s)∆s(g∞ + ε)
]−1}

.

Let T be the cone preserving, completely continuous operator that was defined by (4.8).
From the definitions of f0 and g0, there exists H1 > 0 such that

f(x) ≥ (f0 − ε)x and g(x) ≥ (g0 − ε)x, 0 < x ≤ H1.

Now, g(0) = 0, and so there exists 0 < H2 < H1 such that

λg(x) ≤ H1∫ σ(b)

a
G(σ(s), s)q(s)∆s

, 0 ≤ x ≤ H2.
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Choose u ∈ P with ‖u‖ = H2. Then, for a ≤ s ≤ σ(b), we have

λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r ≤
∫ σ(b)

a
G(σ(s), r)q(r)H1∆r∫ σ(b)

a
G(σ(s), s)q(s)∆s

≤ H1.

Then,

Tu(τ) = λ

∫ σ(b)

a

G(τ, s)p(s)f
(
λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r
)
∆s

≥ λ

∫ ω

ξ

G(τ, s)p(s)(f0 − ε)λ
∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r∆s

≥ λ

∫ ω

ξ

G(τ, s)p(s)(f0 − ε)λ
∫ ω

ξ

G(τ, r)q(r)g(u(σ(r)))∆r∆s

≥ λ

∫ ω

ξ

G(τ, s)p(s)(f0 − ε)λγ
∫ ω

ξ

G(τ, r)q(r)(g0 − ε) ‖ u ‖ ∆r∆s

≥ λ

∫ ω

ξ

G(τ, s)p(s)(f0 − ε)‖u‖∆s

≥ λγ

∫ ω

ξ

G(τ, s)p(s)(f0 − ε)‖u‖∆s ≥ ‖u‖.

So, ‖Tu‖ ≥ ‖u‖. If we put

Ω1 = {x ∈ B : ‖x‖ < H2},

then
‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω1. (4.12)

Next, by definitions of f∞ and g∞, there exists H1 such that

f(x) ≤ (f0 − ε)x and g(x) ≤ (g0 − ε)x, x ≥ H1

There are two cases: (i) g is bounded, and (ii) g is unbounded.
For case (i), suppose N > 0 is such that g(x) ≤ N for all 0 < x < ∞. Then, for

a ≤ s ≤ σ(b) and u ∈ P ,

λ

∫ σ(b)

a

G(σ(s), r)q(r)g(u(σ(r)))∆r ≤ Nλ

∫ σ(b)

a

G(σ(r), r)q(r)∆r.

Let

M = max
{
f(x) | 0 ≤ x ≤ Nλ

∫ σ(b)

a

G(σ(r), r)q(r)∆r
}
,

and let

H3 > max
{

2H2,Mλ

∫ σ(b)

a

G(σ(s), s)p(s)∆s
}
.
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Then, for u ∈ P with ‖u‖ = H3,

Tu(t) ≤ λ

∫ σ(b)

a

G(σ(s), s)p(s)M∆s

≤ H3 = ‖u‖

so that ‖Tu‖ ≤ ‖u‖. If
Ω2 = {x ∈ B : ‖x‖ < H3},

then
‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω2. (4.13)

For case (ii), there exists H3 > max{2H2, H1} such that g(x) ≤ g(H3), for 0 < x ≤

H3. Similarly, there exists H4 > max{H3, λ

∫ σ(b)

a

G(σ(r), r)q(r)g(H3)∆r} such that

f(x) ≤ f(H4), for 0 < x ≤ H4. Choosing u ∈ P with ‖u‖ = H4 we have by (A4) that

Tu(t) ≤ λ

∫ σ(b)

a

G(t, s)p(s)f
(
λ

∫ σ(b)

a

G(σ(r), r)q(r)g(H3)∆r
)
∆s

≤ λ

∫ σ(b)

a

G(t, s)p(s)f(H4)∆s

≤ λ

∫ σ(b)

a

G(σ(s), s)p(s)∆s(f∞ + ε)H4

≤ H4 = ‖u‖,

and so ‖Tu‖ ≤ ‖u‖. For this case, if we let

Ω2 = {x ∈ B : ‖x‖ < H4},

then
‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω2. (4.14)

In either cases, application of part (ii) of Theorem 3.4 yields a fixed point u of T be-
longing to P ∩ (Ω2\Ω1), which in turn yields a pair (u, v) satisfying (1.2), (1.3) for the
chosen value of λ. The proof is complete.

5 Example
In this section, we give an example illustrating our result. For the sake of simplicity we
take p(t) = q(t) and f(t) = g(t). Let

T =
{(2

5

)n
: n ∈ N0} ∪ {0

}
∪ [1, 2].
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Consider the system of two-point dynamic equations

u∆2

(t) +
1

10
λt

kve2v

c+ ev + e2v
= 0, t ∈

[ 4

25
,
2

5

]
,

v∆2

(t) +
1

10
λt

kue2u

c+ eu + e2u
= 0, t ∈

[ 4

25
,
2

5

]
,

u
( 4

25

)
= 0, u

(
σ2
(2

5

))
= 0, v

( 4

25

)
= 0, v

(
σ2
(2

5

))
= 0.

Here p(t) = q(t) =
1

10
t, k = 100, c = 1000,

f(v) =
kve2v

c+ ev + e2v
, g(u) =

kue2u

c+ eu + e2u
.

By simple calculation, we find γ =
1

16
, f0 = g0 =

k

c+ 2
=

500

1002
, f∞ = g∞ = k =

500, L1 = 1.2851, L2 = 2.13625. By Theorem 4.1, it follows that for every λ such
that 1.2851 < λ < 2.13625, the two-point system of dynamic equation has at least one
positive solution.
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