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Abstract

In this work, the solution space of a class of nonlinear fourth order functional
difference equations of the form

(E)∆2(r(n)∆2((y(n) + p(n)y(τ(n))))) + q(n)G(y(α(n)))− h(n)H(y(β(n))) = 0

is studied under the assumption

∞∑
n=0

n

r(n)
=∞

where τ(n) ≤ n − 1, α(n) ≤ n − 1 and β(n) ≤ n − 1 such that lim
n→∞

τ(n) =

∞ = lim
n→∞

α(n) = ∞ = lim
n→∞

β(n). Also, the forced equation of (E) is studied

for various ranges of p(n).

AMS Subject Classifications: 39A10, 39A12.
Keywords: Oscillation, nonoscillation, neutral, delay difference equations, asymptotic
behaviour.

1 Introduction
Consider the fourth order nonlinear functional difference equations of the form

∆2(r(n)∆2((y(n) + p(n)y(τ(n))))) + q(n)G(y(α(n)))− h(n)H(y(β(n))) = 0 (1.1)
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and its associated forced equations

∆2(r(n)∆2((y(n) + p(n)y(τ(n))))) + q(n)G(y(α(n)))

− h(n)H(y(β(n))) = f(n), (1.2)

where r, p, q, h and f are real valued functions defined on N(n0) = {n0, n0 + 1, . . .},
n0 ≥ 0 such that r(n) > 0, q(n) > 0, h(n) > 0 for n ≥ n0, G and H ∈ C(R,R) are
nondecreasing with uG(u) > 0, vH(v) > 0 for u, v 6= 0, and τ, α, β are increasing
functions such that τ(n) ≤ n − 1, α(n) ≤ n − 1 and β(n) ≤ n − 1 and lim

n→∞
τ(n) =

∞ = lim
n→∞

α(n) =∞ = lim
n→∞

β(n).
The objective of this work is to study the solution space of (1.1) and (1.2) under the

assumption

(H0)
∞∑
n=0

n

r(n)
=∞.

Because (1.1)–(1.2) are highly nonlinear, it is interesting to study both equations under
(H0). If h(n) ≡ 0, then (1.1) and (1.2) reduce to

∆2(r(n)∆2((y(n) + p(n)y(τ(n))))) + q(n)G(y(α(n))) = 0 (1.3)

and

∆2(r(n)∆2((y(n) + p(n)y(τ(n))))) + q(n)G(y(α(n))) = f(n) (1.4)

respectively. In [7], the author has studied (1.3) and (1.4) under the assumption (H0) and
τ(n) = n− τ, α(n) = n− α. It shows that if q(n) < 0, then also we can predict analo-
gous results for oscillation and asymptotic behaviour of solutions of (1.3) and (1.4). But
the problem is still left if q(n) changes sign. In particular, if q(n) = q+(n) − q−(n),
where q+(n) = max{0, q(n)} and q−(n) = max{−q(n), 0}, then (1.3) and (1.4) can
be viewed as

∆2(r(n)∆2((y(n) + p(n)y(τ(n))))) + q+(n)G(y(α(n)))

− q−(n)G(y(α(n))) = 0 (1.5)

and

∆2(r(n)∆2((y(n) + p(n)y(τ(n))))) + q+(n)G(y(α(n)))

− q−(n)G(y(α(n))) = f(n) (1.6)

respectively. Clearly, (1.5)–(1.6) is a particular case of (1.1)–(1.2) and the present work
is devoted to study the more general functional difference equations of the type (1.1)–
(1.2) rather than (1.5)–(1.6). On the other hand, (1.3)–(1.4) is a special case of (1.1)–
(1.2) and hence the study of (1.1)–(1.2) is more illustrative in view of (H0).
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Keeping in view the above fact, the motivation of the present work has come from
the work of [7]. We may note that, there is almost no work in this direction as long as
the functional equations (1.1)–(1.2) are concerned.

For the last decade, the study of the behaviour of the solutions of functional differ-
ential/difference equations with positive and negative coefficients of first, second and
higher order is a major area of research. Most of the work dealt with the existence of
positive solutions of the functional equations. However, much attention has not been
given to oscillation results. We refer the reader to some of the works [5, 6, 8–10].

In the present paper, the author has made an attempt to study the solution space of the
functional difference equations (1.1) and (1.2) under the assumption (H0) with different
ranges of p(n). It is noticed that the solution when it is bounded, either oscillates or
converges to zero. But, when the solution is bounded, it oscillates.

Definition 1.1 (See [3]). Define ρ = −min
n≥0
{τ(n), α(n), β(n)}. By a solution of (1.1),

we mean a sequence of real numbers (y(n))n≥−ρ which satisfies (1.1) for all n ≥ 0.
It is clear that, for each choice of real numbers C−ρ, C−ρ+1, . . . , C−1, C0,there exists
a unique solution (y(n))n≥−ρ of (1.1) which satisfies the initial conditions y(−ρ) =
C−ρ, y(−ρ+1) = C−ρ+1, . . . , y(−1) = C−1, y(0) = C0. As usual, a solution (y(n))n≥−ρ
of (1.1) is called oscillatory if the terms y(n) of the sequence are neither eventually pos-
itive nor eventually negative, and otherwise the solution is said to be nonoscillatory.

2 Some Lemmas
This section deals with some established results which are useful throughout our dis-
cussion.

Lemma 2.1 (See [1]). Let {fn},{qn} and {pn} be the sequences of reals defined for
n ≥ N0 > 0 such that

fn = qn − pnqτ(n), n ≥ N1 > N0,

where {τ(n)} is an increasing unbounded sequence such that τ(n) ≤ n − 1. Suppose
that pn satisfies one of the following three conditions:

−1 < −b1 ≤ pn ≤ 0, −b2 ≤ pn ≤ −b3 < −1, and 0 ≤ pn ≤ b4 <∞,

for all n ∈ N , where b1, b2, b3 and b4 are constants. If qn > 0 for n ≥ N0, lim inf
n→∞

qn = 0

and lim
n→∞

fn = L exists, then L = 0.

Lemma 2.2 (See [2, 3]). If p(n) > 0 for all n ≥ n0 ≥ 0 and

lim inf
n→∞

n−1∑
j=δ(n)

p(j) >
1

e
,



82 A. K. Tripathy

then ∆x(n) + p(n)x(δ(n)) ≤ 0, n ≥ n0 ≥ 0 can not have an eventually positive
solution.

Lemma 2.3 (See [7]). Let (H0) hold. Let u be a real valued function on [0,∞) such
that ∆2(r(n)∆2u(n)) ≤ 0 for large n. If u(n) > 0 ultimately, then one of cases (a) and
(b) holds for large n, and if u(n) < 0 ultimately, then one of cases (b),(c),(d) and (e)
holds for large n, where
(a) ∆u(n) > 0, ∆2u(n) > 0 and ∆(r(n)∆2u(n) > 0,
(b) ∆u(n) > 0, ∆2u(n) < 0 and ∆(r(n)∆2u(n) > 0,
(c) ∆u(n) < 0, ∆2u(n) < 0 and ∆(r(n)∆2u(n) > 0,
(d) ∆u(n) < 0, ∆2u(n) < 0 and ∆(r(n)∆2u(n) < 0,
(e) ∆u(n) < 0, ∆2u(n) > 0 and ∆(r(n)∆2u(n) > 0.

Lemma 2.4 (See [4]). Let the conditions of Lemma 2.3 hold. If u(n) > 0 ultimately,
then u(n) > RN(n− 1)∆(r(n)∆2u(n)), where

RN(n) =
n−1∑
t=N

t−1∑
s=N

(s−N)

r(s)
.

3 Oscillation Criteria for (1.1)

In this section, sufficient conditions are obtained for the oscillation and asymptotic be-
haviour of solutions of the functional difference equations (1.1) under the assumption
(H0). In the sequel, we use the following hypotheses:

(H1) there exists λ > 0 such that for every u, v > 0, u, v ∈ R, G(u) + G(v) ≥
λG(u+ v);

(H2) G(uv) = G(u)G(v), H(uv) = H(u)H(v);

(H3) Q(n) = min{q(n), q(τ(n))}, n ∈ N(n0);

(H4) τ(α(n)) = α(τ(n)), n ∈ N(n0);

(H5) G is sublinear and
∫ ±c

0

dx

G(x)
<∞, for c > 0;

(H6)
∞∑
s=0

s

r(s)

∞∑
n=s

nh(n) <∞;

(H7)
∞∑

n=n0

Q(n) =∞;

(H8) lim inf
n→∞

G(x)

x
≥ γ > 0;



Fourth Order Functional Difference Equations 83

(H9)
∞∑

n=n0

q(n) =∞;

(H10) lim inf
n→∞

n−1∑
j=α(n)

G(RN(α(j)− 1))q(j) > (γeG(1− a))−1, 0 < a < 1;

(H11)
∞∑

n=n0+N

G(RN(α(n)− 1))Q(n) =∞;

(H12)
G(x1)

xσ1
≥ G(x2)

xσ2
for x1 ≥ x2 > 0 and σ ≥ 1;

(H13)
∞∑

n=n0+N

Rσ
N(α(n)− 1)Q(n) =∞.

Remark 3.1. (H10) implies that
∞∑

j=n+ρ

G(RN(α(j)− 1))q(j) =∞. Indeed, if

∞∑
j=n+ρ

G(RN(α(j)− 1))q(j) = b <∞, then for n ≥ n0 > N + ρ,

lim inf
n→∞

n−1∑
j=α(n)

G(RN(α(j)− 1))q(j) = lim inf
n→∞

(
n−1∑
j=n1

−
α(n)∑
j=n1

)G(RN(α(j)− 1))q(j)

≤ b− b = 0,

a contradiction.

Theorem 3.2. Let 0 ≤ p(n) ≤ a < 1. Suppose that (H0), (H2), (H6), and (H8)–(H10)
hold. Then every solution of (1.1) either oscillates or tends to zero as n→∞.

Proof. On the contrary, y(n) be a non-oscillatory solution of (1.1) on [n0,∞). Then
y(n) > 0 or < 0, for n ≥ n0. Therefore, there exists n1 > n0 such that y(n) >
0, y(τ(n)) > 0, y(α(n)) > 0 and y(β(n)) > 0, for n ≥ n1. Setting

z(n) = y(n) + p(n)y(τ(n)), (3.1)

K(n) =
∞∑
s=n

(s− n+ 1)

r(s)

∞∑
t=s

(t− s+ 1)h(t)H(y(β(t))) (3.2)

and

w(n) = z(n)−K(n) = y(n) + p(n)y(τ(n))−K(n) (3.3)
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we obtain

∆2(r(n)∆2w(n)) = −q(n)G(y(α(n))) < 0 (3.4)

for n ≥ n1. Consequently, w(n),∆w(n),∆(r(n)∆2w(n)) are monotonic real valued
functions on [n1,∞). In what follows, either w(n) > 0 or w(n) < 0, for n ≥ n1.
Suppose the former holds. By Lemma 2.3, any one of cases (a) and (b) holds. In each
case, w(n) is nondecreasing. We note that K(n) > 0,∆K(n) < 0 and ∆2K(n) > 0
implies that lim

n→∞
K(n) = 0 due to (H6). Hence for 0 < ∆w(n) = ∆z(n) − ∆K(n),

it is immediate to say that either∆z(n) > 0 or ∆z(n) > 0. Let n2 > n1 be such that
∆z(n) > 0, for n ≥ n2. Then

(1− p(n))z(n) ≤z(n)− p(n)z(τ(n))

=y(n) + p(n)y(τ(n))− p(n)y(τ(n))− p(n)p(τ(n))y(τ(τ(n)))

=y(n)− p(n)p(τ(n))y(τ(τ(n))) < y(n),

that is,

y(n) > (1− a)z(n) > (1− a)w(n), n ≥ n2.

Consequently, (3.4) yields

G((1− a)w(α(n)))q(n) ≤ −∆2(r(n)∆2w(n)).

Upon using Lemma 2.4 and (H2), the last inequality becomes

G(1− a)q(n)G(RN(α(n)− 1))G(∆r(α(n))∆2w(α(n)))

≤ −∆2(r(n)∆2w(n)) (3.5)

for n ≥ N > n2. Let lim
n→∞

∆(r(n)∆2w(n)) = C, C ∈ [0,∞). If 0 < C < ∞, then

there exist C1 > 0 and n3 > N such that ∆(r(n)∆2w(n)) > C1, for n ≥ n3 and hence
(3.5) yields

G(1− a)G(C1)G(RN(α(n)− 1))q(n) ≤ −∆2(r(n)∆2w(n)).

Therefore, for n ≥ n3

∞∑
n=n3

G(1− a)G(C1)G(RN(α(n)− 1))q(n) <∞,

a contradiction due to Remark 3.1. Thus C = 0. Using (H8), it follows that
G(∆(r(n)∆2w(n))) ≥ γ∆(r(n)∆2w(n)), for n ≥ n3 and hence (3.5) becomes

γG(1− a)q(n)G(RN(α(n)− 1))∆(r(α(n))∆2w(α(n))) ≤ −∆2(r(n)∆2w(n)),
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that is,

∆u(n) + γG(1− a)G(RN(α(n)− 1))q(n)u(α(n)) ≤ 0, n ≥ n3. (3.6)

From Lemma 2.2, it follows that (3.6) has no positive solution due to (H10), a contra-
diction to the fact that ∆(r(n)∆2w(n)) > 0, for n ≥ n3. Ultimately, ∆z(n) < 0,
for n ≥ n2. Because lim

n→∞
K(n) exists and w(n) is monotonic, then lim

n→∞
z(n) exists.

Further, lim
n→∞

∆(r(n)∆2w(n)) exists implies that (since (H9) holds)

∞∑
n=n0

q(n)G(y(α(n)) <∞

and hence it is easy to verify that lim inf
n→∞

y(n) = 0. Consequently, lim
n→∞

z(n) = 0 due to

Lemma 2.1. Because z(n) ≥ y(n), then lim
n→∞

y(n) = 0.
Assume that the later holds. Then

y(n) ≤ z(n) = y(n) + p(n)y(τ(n)) < K(n),

that is, y(n) is bounded (since K(n) is bounded). By Lemma 2.3, any one of cases
(b)-(e) holds.
Case (b) Proceeding as above, it is easy to show that lim

n→∞
y(n) = 0.

Cases (c)and (d) These two cases are not possible due to the fact that w(n) < 0, y(n) is
bounded, lim

n→∞
K(n) exists and hence lim

n→∞
w(n) exists. This fact is contradictory when

we sum successively ∆2w(n) ≤ 0 from n1 to n− 1, where lim
n→∞

w(n) = −∞.

Case (e) (r(n)∆2w(n)) is nondecreasing on [n1,∞). Thus for n ≥ n1, (r(n)∆2w(n)) ≥
(r(n1)∆2w(n1)), that is,

n∆2w(n) ≥ n

r(n)
(r(n1)∆2w(n1)). (3.7)

Summing (3.7) from n1 to (n− 1), we obtain

n−1∑
s=n1

s∆2w(s) ≥ (r(n1)∆2w(n1))
n−1∑
s=n1

s

r(s)
,

that is,

n∆w(n) ≥ n1∆w(n1) + w(n+ 1)− w(n1 + 1)(r(n1)∆2w(n1))
n−1∑
s=n1

s

r(s)
> 0

as n→∞, a contradiction.
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Finally, we suppose that y(n) < 0, for n ≥ n0. From (H2), we may note that
G(−u) = −G(u) and H(−u) = −H(u), for u ∈ R.Indeed, G(1)G(1) = G(1) and
G(−1)G(−1) = G(1) implies that G(−1) = −1 and G(1) = 1. Hence putting x(n) =
−y(n) in (1.1), for n ≥ n0 , we obtain x(n) > 0 and

∆2(r(n)∆2((x(n) + p(n)x(τ(n))))) + q(n)G(x(α(n)))− h(n)H(x(β(n))) = 0.

Proceeding as above, we can show that every solution of (1.1) either oscillates or con-
verges to zero as n→∞. This completes the proof of the theorem.

Remark 3.3. By Theorem 3.2, we have that y(n) is bounded ultimately when w(n) < 0,
for n ≥ n1. Hence the case w(n) < 0 doesn’t arise, if y(n) is unbounded. Therefore,
we have proved the following theorem.

Theorem 3.4. Let 0 ≤ p(n) ≤ a < 1. Suppose that (H0), (H2), (H6), (H8) and (H10)
hold. Then every unbounded solution of (1.1) oscillates.

Theorem 3.5. Let 0 ≤ p(n) ≤ a <∞. Assume that τ(n) ≥ α(n) for all n ∈ N(n0). If
(H0)–(H7) and (H11) hold, then every solution of (1.1) either oscillates or tends to zero
as n→∞.

Proof. Let y(n) be a nonoscillatory solution of (1.1) such that y(n) > 0, for n ≥ n0.
The proof for the case y(n) < 0, for n ≥ n0 is similar. Setting z(n) and K(n) as in
(3.1) and (3.2), we obtain (3.3) and (3.4) for n ≥ n1 > n0. From Lemma 2.3, it follows
that any one of cases (a) and (b) holds when w(n) > 0, for n ≥ n1. Upon using (1.1),
we obtain

0 = ∆2(r(n)∆2w(n)) + q(n)G(y(α(n))) +G(a)∆2(r(τ(n))∆2w(τ(n))

+G(a)q(τ(n))G(y(α(τ(n))))

≥ ∆2(r(n)∆2w(n)) +G(a)∆2(r(τ(n))∆2w(τ(n)) +Q(n)[G(y(α(n)))

+G(a)G(y(α(τ(n))))]

= ∆2(r(n)∆2w(n)) +G(a)∆2(r(τ(n))∆2w(τ(n)) +Q(n)[G(y(α(n)))

+G(ay(τ(α(n))))]

≥ ∆2(r(n)∆2w(n)) +G(a)∆2(r(τ(n))∆2w(τ(n)) + λQ(n)G(z(α(n)))

due to (H1), (H2), (H3) and (H4). Since z(n) ≤ w(n), then the last inequality becomes

∆2(r(n)∆2w(n)) +G(a)∆2(r(τ(n))∆2w(τ(n)) + λQ(n)G(w(α(n))) ≤ 0, (3.8)

that is,

λQ(n) ≤ −∆2(r(n)∆2w(n)) +G(a)∆2(r(τ(n))∆2w(τ(n))

G(w(α(n)))
. (3.9)
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Using Lemma 2.4 in (3.9), we obtain that

λQ(n) ≤ −∆2(r(n)∆2w(n)) +G(a)∆2(r(τ(n))∆2w(τ(n))

G(RN(α(n)− 1)∆(r(α(n))∆2w(α(n)))
,

that is,

λQ(n)(RN(α(n)− 1) ≤ −∆2(r(n)∆2w(n)) +G(a)∆2(r(τ(n))∆2w(τ(n))

G(∆(r(α(n))∆2w(α(n))))
,

for n ≥ N > n1. In what follows,

λQ(n)(RN(α(n)− 1) ≤ − ∆2(r(n)∆2w(n))

G(∆(r(n)∆2w(n)))
− G(a)∆2(r(τ(n))∆2w(τ(n))

G(∆(r(τ(n))∆2w(τ(n))))
,

for n ≥ n2 > N . Let ` = r(n)∆2w(n). Then the above inequality yields

λQ(n)(RN(α(n)− 1) ≤
∫ ∆`(n)

∆`(n+1)

du

G(∆(r(n)∆2w(n)))

+G(a)

∫ ∆`(τ(n))

∆`(τ(n+1))

dv

G(∆(r(τ(n))∆2w(τ(n))))
,

where ∆`(n+ 1) ≤ u ≤ ∆`(n) and ∆`(τ(n+ 1)) ≤ v ≤ ∆`(τ(n)). Hence for n ≥ n2,
we get

λQ(n)(RN(α(n)− 1) ≤
∫ ∆`(n)

∆`(n+1)

du

G(u)
+G(a)

∫ ∆`(τ(n))

∆`(τ(n+1))

dv

G(v)
,

that is,

λ
t−1∑
n=n2

Q(n)(RN(α(n)− 1) ≤
t−1∑
n=n2

[∫ ∆`(n)

∆`(n+1)

du

G(u)
+G(a)

∫ ∆`(τ(n))

∆`(τ(n+1))

dv

G(v)

]

=

∫ ∆`(n2)

∆`(t)

du

G(u)
+G(a)

∫ ∆`(τ(n2))

∆`(τ(t))

dv

G(v)
.

Since ∆`(n) is decreasing, then

λ
∞∑

n=n2

Q(n)(RN(α(n)− 1) ≤ lim
t→∞

[∫ ∆`(n2)

∆`(t)

du

G(u)
+G(a)

∫ ∆`(τ(n2))

∆`(τ(t))

dv

G(v)

]
<∞,

a contradiction to (H11) due to (H5). Ultimately, w(n) < 0, for n ≥ n1. The rest of the
proof follows from Theorem 3.2 and hence the details are omitted. Thus the theorem is
proved.
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Theorem 3.6. Let 0 ≤ p(n) ≤ a <∞. Assume that τ(n) ≥ α(n) for all n ∈ N(n0). If
(H0)–(H6) and (H11))hold, then every unbounded solution of (1.1) is oscillatory .

Proof. The proof follows from the proof of Theorem 3.5 and Remark 3.3. Hence the
details are omitted.

Theorem 3.7. Let 0 ≤ p(n) ≤ a < ∞ and τ(n) ≥ α(n), for all n ∈ N(n0). If (H0)–
(H4), (H6), (H7), (H12) and (H13) hold, then every solution of (1.1) either oscillates or
converges to zero as n→∞.

Proof. Proceeding as in Theorem 3.5, we obtain (3.8) for n ≥ n1. Since w(n) is in-
creasing, then there exist n2 > n1 and η > 0 such that w(n) ≥ η, for n ≥ n2. Using
(H12) and Lemma 2.4, we get

G(w(α(n))) =
G(w(α(n)))

wσ(α(n))
wσ(α(n))

≥ G(η)

ησ
wσ(α(n))

≥ G(η)

ησ
Rσ
N(α(n)− 1)(∆(r(α(n))∆2w(α(n))))σ

and hence the inequality (3.8) yields

λ
G(η)

ησ
Rσ
N(α(n)− 1)Q(n) ≤ −∆2(r(n)∆2w(n)) +G(a)∆2(r(τ(n))∆2w(τ(n))

(∆(r(α(n))∆2w(α(n))))σ

≤ − ∆2(r(n)∆2w(n))

(∆(r(n)∆2w(n)))σ
−G(a)

∆2(r(τ(n))∆2w(τ(n))

(∆(r(τ(n))∆2w(τ(n))))σ

due to τ(n) ≥ α(n). Denoting ` = r(n)∆2w(n), it follows that

λ
G(η)

ησ
Rσ
N(α(n)− 1)Q(n) ≤ −

∫ ∆`(n+1)

∆`(n)

du

(∆(r(n)∆2w(n)))σ

−G(a)

∫ ∆`(τ(n+1))

∆`(τ(n))

dv

(∆(r(τ(n))∆2w(τ(n))))σ
,

for n ≥ n2. Using the same type of reasoning as in the proof of Theorem 3.5, we obtain

λ
G(η)

ησ

∞∑
n=n2

Rσ
N(α(n)− 1)Q(n) ≤ lim

t→∞

[∫ ∆`(n2)

∆`(t)

du

uσ
+G(a)

∫ ∆`(τ(n2))

∆`(τ(t))

dv

vσ

]
<∞,

a contradiction to (H13), where we have used the fact that lim
t→∞

∆`(t) exists. The rest of
the proof follows from the proof of Theorem 3.5. Hence the theorem is proved.
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Remark 3.8. The prototype of G satisfying (H1) and (H2) is

G(u) = (c+ d|u|m)|u|µsgnu,

where c > 0, d > 0,m ≥ 0 and µ ≥ 0 such that c+ d = 1.

Theorem 3.9. Let 0 ≤ p(n) ≤ a < ∞ and τ(n) ≥ α(n), for all n ∈ N(n0). If (H0)–
(H4), (H6), (H12) and (H13) hold, then every unbounded solution of (1.1) oscillates.

Proof. The proof follows from the proof of Theorem 3.7 and Remark 3.3. Hence the
details are omitted.

Example 3.10. Consider

∆2[n∆2((y(n) + p(n)y(τ(n))))] + q(n)y3(α(n))− h(n)y5(β(n)) = 0, (3.10)

where n ≥ 5, 0 ≤ p(n) = (1 + (−1)n) ≤ 2, τ(n) = n − 3, α(n) = n − 5 = β(n),

G(u) = u3, H(v) = v5, q(n) = (
48(n+ 1)

(n− 1)3
+

1

(n− 1)
), h(n) =

1

(n− 1)3
and r(n) =

n. Clearly, all the conditions of Theorem 3.9 are satisfied. Hence every unbounded
solution of (3.10) oscillates. In particular, y(n) = (n+4)(−1)n is an oscillatory solution
of (3.10).

Theorem 3.11. Let −1 < b ≤ p(n) ≤ 0. If (H0), (H2), (H5), (H6) and (H9) hold, then
every solution of (1.1) either oscillates or converges to zero as n→∞.

Proof. Let y(n) be a nonoscillatory solution of (1.1) on [n0,∞), n0 ≥ 0. Because of
(H2), without loss of generality we may suppose that y(n) > 0, for n ≥ n0. Setting as
in (3.1),(3.2) and (3.3), we obtain (3.4) for n ≥ n1 > n0. Hence w(n) is monotonic
on [n1,∞). If w(n) > 0, for n ≥ n1, then any one of cases (a) and (b) of Lemma 2.3
holds. Consequently, w(n) > RN(n− 1)∆(r(n)∆2w(n)), for n ≥ n2 > n1 +N due to
Lemma 2.4. Moreover, w(n) ≤ y(n) implies that y(n) > RN(n − 1)∆(r(n)∆2w(n)),
for n ≥ n2 and hence (3.4) becomes

∆2(r(n)∆2w(n)) + q(n)G(RN(α(n)− 1)∆(r(n)∆2w(n))) ≤ 0.

Using (H2) and (H5), and proceeding as in Theorem 3.5, we get from the above inequal-
ity that

∞∑
n=n2

q(n)G(RN(α(n)− 1)) <∞,

a contradiction to (H5), where we are using the fact that RN(n) is nondecreasing. Ulti-
mately, w(n) < 0, for n ≥ n1. Then any one of cases (b)-(e) of Lemma 2.3 holds. Due
to Remark 3.3, z(n) is bounded also is w(n) and hence we assert that y(n) is bounded.
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Suppose there exists a subsequence {n′

j} of {n} such that {n′

j} → ∞ and y(n
′

j) → ∞
as j →∞ and

y(n
′

j) = max{y(n) : n1 ≤ n ≤ n
′

j}.

Since τ(n) ≤ n− 1 < n, then y(τ(n
′

j)) < y(n
′

j) implies that

w(n
′

j) = y(n
′

j) + p(n
′

j)y(τ(n
′

j))−K(n
′

j)

≥ (1 + p(n
′

j))y(n
′

j)−K(n
′

j)

→∞ as j →∞,

which is absurd, where we have used the fact that (1+p(n
′

j)) > 0 and lim
j→∞

K(n
′

j) exists.

Therefore, our assertion holds. It is easy to verify the cases (c),(d) and (e) following to
Theorem 3.2. Also, proceeding as in Theorem 3.2, we obtain lim inf

n→∞
y(n) = 0. Hence

lim
n→∞

z(n) = 0 due to Lemma 2.1. As a result

0 = lim
n→∞

z(n) ≥ lim sup
n→∞

(y(n) + by(τ(n)))

≥ lim sup
n→∞

y(n) + lim inf
n→∞

(by(τ(n)))

= lim sup
n→∞

y(n) + b lim sup
n→∞

y(τ(n))

= (1 + b) lim sup
n→∞

y(n)

implies that lim sup
n→∞

y(n) = 0. This completes the proof of the theorem.

Theorem 3.12. Let −1 < b ≤ p(n) ≤ 0. If all the conditions of Theorem 3.11 hold,
then every unbounded solution of (1.1) oscillates.

The proof of the theorem follows from Theorem 3.11 and hence the details are omit-
ted.

Example 3.13. Consider

∆2[e−n∆2((y(n) + p(n)y(τ(n))))] + q(n)y3(α(n))− h(n)y5(β(n)) = 0, (3.11)

n ≥ 0, where p(n) = (
−1

e
), q(n) = e−9(2(e−1 + 1)4e3n + e−n),h(n) = e−(n+9), τ(n) =

n − 1, α(n) = n − 3 = β(n) and r(n) = e−n. Clearly, all the conditions of Theorem
3.11 are satisfied. Hence every solution of (3.11) either oscillates or converges to zero
as n→∞. In particular, y(n) = (−1)ne−n is such a solution of (3.11).

Theorem 3.14. Let −∞ < b ≤ p(n) ≤ d < −1. If all the conditions of Theorem
3.11 hold, then every bounded solution of (1.1) either oscillates or converges to zero as
n→∞.

Proof. The proof follows from the proof of Theorem 3.11 and hence the details are
omitted.
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4 Oscillation Criteria for (1.2)

This section is devoted to study the oscillatory behaviour of solutions of (1.2) with
suitable forcing functions. Our attention is restricted to the forcing functions which
are changing sign eventually. We have the following hypotheses regarding the forcing
function f(n):

(H14) there exists a real valued function F (n) such that F (n) changes sign with

−∞ < lim inf
n→∞

F (n) < 0 < lim sup
n→∞

F (n) <∞

and ∆2(r(n)∆2F (n)) = f(n);

(H15) there exists a real valued function F (n) such that F (n) changes sign with

lim inf
n→∞

F (n) = −∞, lim sup
n→∞

F (n) =∞

and ∆2(r(n)∆2F (n)) = f(n).

Theorem 4.1. Let 0 ≤ p(n) ≤ b <∞. Assume that (H0)–(H4) and (H6) hold. If (H15)
holds and

(H16)
∞∑

n=n0

Q(n)G(F+(α(n))) =∞ =
∞∑

n=n0

Q(n)G(F−(α(n))),

where F+(n) = max{0, F (n)} and F−(n) = max{−q(n), 0}, then (1.2) is oscillatory.

Proof. Let y(n) be a nonoscillatory solution of (1.2) on [n0,∞). Suppose that y(n) > 0,
for n ≥ n0. Setting as in (3.1),(3.2) and (3.3), let

v(n) = w(n)− F (n) = z(n)−K(n)− F (n). (4.1)

Hence for n ≥ n1 > n0, Eq.(1.2) becomes

∆2(r(n)∆2v(n)) = −q(n)G(y(α(n))) ≤ 0, but 6= 0. (4.2)

Thus v(n) is monotonic on [n1,∞). Since F (n) changes sign, then v(n) > 0 implies
that z(n) − K(n) > F (n). In what follows, z(n) − K(n) < 0 unlikely holds due to
(H15). Hence z(n)−K(n) > 0 implies that z(n)−K(n) > F+(n), that is,

z(n) > K(n) + F+(n) > F+(n), (4.3)
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for n ≥ n1. Upon using (1.2) for n ≥ n2 > n1, we have

0 = ∆2(r(n)∆2v(n)) + q(n)G(y(α(n))) +G(b)∆2(r(τ(n))∆2v(τ(n))

+G(b)q(τ(n))G(y(α(τ(n))))

≥ ∆2(r(n)∆2v(n)) +G(b)∆2(r(τ(n))∆2v(τ(n)) +Q(n)[G(y(α(n)))

+G(b)G(y(α(τ(n))))]

= ∆2(r(n)∆2v(n)) +G(b)∆2(r(τ(n))∆2v(τ(n)) +Q(n)[G(y(α(n)))

+G(by(τ(α(n))))]

≥ ∆2(r(n)∆2v(n)) +G(b)∆2(r(τ(n))∆2v(τ(n)) + λQ(n)[G(y(α(n))

+ by(τ(α(n))))]

≥ ∆2(r(n)∆2v(n)) +G(b)∆2(r(τ(n))∆2v(τ(n)) + λQ(n)G(z(α(n)))

due to (H1), (H2), (H3) and (H4). When v(n) > 0, any one of cases (a) and (b) of
Lemma 2.3 holds. Using (4.3) in the last inequality, we obtain

λQ(n)G(F+(α(n))) ≥ −∆2(r(n)∆2v(n))−G(b)∆2(r(τ(n))∆2v(τ(n)),

that is,

λ
∞∑

n=n2

Q(n)G(F+(α(n))) <∞,

a contradiction to (H16). Consequently, v(n) < 0, for n ≥ n1. Thus any one of cases
(b)-(e) of Lemma 2.3 holds. Because lim

n→∞
v(n) exists, then for each of the cases z(n) =

v(n) +K(n) + F (n) implies that

lim inf
n→∞

z(n) = lim inf
n→∞

(v(n) +K(n) + F (n))

≤ lim sup
n→∞

v(n) + lim inf
n→∞

(K(n) + F (n))

≤ lim sup
n→∞

v(n) + lim sup
n→∞

K(n) + lim inf
n→∞

F (n)

→ −∞,

a contradiction to the fact that z(n) > 0, for n ≥ n1.
If y(n) < 0 for n ≥ n0, then we set x(n) = −y(n) to obtain x(n) > 0 for n ≥ n0

and

∆2(r(n)∆2((x(n) + p(n)x(τ(n))))) + q(n)G(x(α(n)))− h(n)H(x(β(n))) = f̄(n),

where f̄ = −f . If F̄ = −F , then F̄ changes sign, F̄+ = F− and ∆2(r(n)∆2F̄ (n)) =
f̄(n). Proceeding as above we have a contradiction. Thus the theorem is proved.

Theorem 4.2. Let −1 < p(n) ≤ 0. Suppose that (H0), (H2), (H6) and (H15) hold. If



Fourth Order Functional Difference Equations 93

(H17)
∞∑

n=n0

q(n)G(F+(α(n))) =∞ =
∞∑

n=n0

q(n)G(F−(α(n))),

then every solution of (1.2) oscillates.

Proof. Proceeding as in the proof of Theorem 4.1, we obtain v(n) > 0 or < 0, for
n ≥ n1. If v(n) > 0, then any one of cases (a) and (b) of Lemma 2.3 holds for n ≥ n1.
Using the same type of reasoning as in Theorem 4.1, z(n) − K(n) > 0. Because
K(n) > 0, then z(n) > 0. Hence there exists n2 > n1 such that v(n) > 0 implies that
z(n)−K(n) > F+(n), for n ≥ n2. Consequently,

y(n) > z(n) > z(n)−K(n) > F+(n), n ≥ n2.

Therefore, (4.2) becomes

q(n)G(F+(α(n))) ≤ −∆2(r(n)∆2v(n)), n ≥ n2,

that is,

∞∑
n=n2

q(n)G(F+(α(n))) <∞,

a contradiction to (H17). Ultimately, v(n) < 0, for n ≥ n1. As a result, z(n)−K(n) <
F (n) yields that z(n) − K(n) < 0 due to (H15). In what follows, either z(n) > 0 or
< 0, for n ≥ n1. Assume that the former holds. Similar to Theorem 4.1, it happens
that lim inf

n→∞
z(n) < −∞, a contradiction to the fact that z(n) > 0, for n ≥ n1. Hence

the later holds. Proceeding as in Theorem 3.11, it is easy to show that y(n) is bounded
and hence z(n) is bounded. Using the same type of reasoning as above, it follows that
lim inf
n→∞

z(n) = −∞, which is contradictory to the fact that z(n) is bounded.

For the case y(n) < 0, for n ≥ n0, we can proceed as in Theorem 4.1 to obtain the
desired contradiction. This completes the proof of the theorem.

Theorem 4.3. Let−∞ < p(n) ≤ −1. If all the conditions of Theorem 4.2 are satisfied,
then every bounded solution of (1.2) oscillates.

Proof. The proof follows from the proof of Theorem 4.2. Hence the details are omitted.

Theorem 4.4. Let 0 ≤ p(n) ≤ b < ∞. If (H0)–(H4), (H6), (H14) and (H16) hold, then
every unbounded solution of (1.2) is oscillatory.

Proof. Suppose on the contrary that y(n) is an unbounded nonoscillatory solution of
(1.2) such that y(n) > 0, for n ≥ n0. Setting as in (3.1),(3.2),(3.3) and (4.1), we obtain
(4.2) and hence v(n) is monotonic on [n1,∞), n1 > n0. The case v(n) > 0, for n ≥ n1

can be followed from the proof of Theorem 4.1. Let v(n) < 0, for n ≥ n1. Then any
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one of cases (b)-(e) of Lemma 2.3 holds. In the case (b), lim
n→∞

v(n) exists(finite) and
hence

z(n) = v(n) +K(n) + F (n)

implies that

y(n) ≤ v(n) +K(n) + F (n), (4.4)

that is, y(n) is bounded due to (H14), a contradiction. For each of the cases (c),(d) and
(e), v(n) is nonincreasing on [n1,∞). Let lim

n→∞
v(n) = c1, c1 ∈ [−∞, 0). If c1 = −∞,

then (4.4) yields

lim inf
n→∞

y(n) ≤ lim inf
n→∞

(v(n) +K(n) + F (n))

≤ lim sup
n→∞

v(n) + lim inf
n→∞

(K(n) + F (n))

≤ lim
n→∞

v(n) + lim inf
n→∞

K(n) + lim sup
n→∞

F (n)

→ −∞,

which is absurd. The contradiction is obvious, when −∞ < c1 < 0.
The case y(n) < 0 is similar. Hence the theorem is proved.

Theorem 4.5. Let −1 < b ≤ p(n) ≤ 0. Assume that

(H18) τ(τ `(n)) = τ `+1(n) and lim
`→∞

τ `(n) = c1, c1 > 0

for all n ∈ N(n0). If (H0), (H2), (H6), (H14) and (H17) hold, then every unbounded
solution of (1.2) oscillates.

Proof. Let y(n) be an unbounded nonoscillatory solution of (1.2) such that y(n) > 0,
for [n0,∞). Proceeding as in the proof of Theorem 4.2, we have a contradiction when
v(n) > 0, for n ≥ n1 > n0 + ρ.

Next, we suppose that v(n) < 0, for n ≥ n1. In what follows, z(n)−K(n) < 0 due
to (H14). Therefore, either z(n) < 0 or z(n) > 0, for n ≥ n2 > n1. If z(n) < 0, for
n ≥ n2, then y(n) < y(τ(n)) and hence proceeding recursively, we obtain

y(n) < y(τ(n)) < y(τ(τ(n))) = y(τ 2(n)) < . . . < y(τ `(n)) < . . . ,

that is, there exists a constant c2 > 0 such that y(n) < y(c2), for any n ≥ n2 due to
(H18). Consequently, y(n) is bounded for n ≥ n2, a contradiction to our hypothesis.
Ultimately, z(n) > 0, for n ≥ n2 and hence z(n) < K(n), for n ≥ n2 implies that z(n)
is bounded on [n2,∞). On the other hand, y(n) is unbounded implies that, there exists
{δj}∞j=1 ⊂ {n}, n ∈ N(n0) such that δj →∞ as j →∞ and

y(δj) = max{y(n) : n2 ≤ n ≤ δj}.
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Hence τ(n) ≤ n− 1 < n and y(τ(n)) < y(n) yields that

z(δj) ≥ (1 + b)y(δj)→∞ as j →∞,

a contradiction to the fact that z(n) is bounded on [n2,∞). This completes the proof of
the theorem.

Example 4.6. Consider

∆2(e−n∆2(y(n) + p(n)y(n− 1))) + q(n)y3(n− 2)− h(n)y5(n− 4) = f(n), (4.5)

n ≥ 4, where p(n) = 2(1+(−1)n), q(n) = [en+(8e−1+4e−2+1)], h(n) = e−n, f(n) =
(en − 4e−n)(−1)n,τ(n) = n − 1, α(n) = n − 2 and β(n) = n − 4. Clearly, Q(n) =
en−1 + (8 + 4e−1 + e)e−n. If we define

F (n) =

[
e2n

(e+ 1)2(e2 + 1)2
− 1

(e−1 + 1)2

]
(−1)n,

then ∆2(e−n∆2F (n)) = (en − 4e−n)(−1)n. Hence

F+(n− 2) =


e2n

(e+ 1)2(e2 + 1)2
− 1

(e−1 + 1)2
, if n is even

0, if n is odd,

F−(n− 2) =


0, if n is even

e2n

(e+ 1)2(e2 + 1)2
− 1

(e−1 + 1)2
, if n is odd.

Consequently,

∞∑
n=2

Q(n)G(F+(n− 2)) =
∞∑
n=2

[en−1 + (8 + 4e−1 + e)e−n][F+(n− 2)]3 =∞

and

∞∑
n=2

Q(n)G(F−(n− 2)) =
∞∑
n=2

[en−1 + (8 + 4e−1 + e)e−n][F−(n− 2)]3 =∞.

From Theorem 4.1, it follows that all solutions of (4.5) oscillate. In particular, y(n) =
(−1)n is an oscillatory solution of (4.5).
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5 Discussion
The solution space of (1.1)–(1.2) is divided for bounded and unbounded solutions. Due
to the method incorporated here, we could not eliminate the bounded solutions of (1.1)
as converges to zero. However, in case of unbounded solution, it oscillates. For Eq.(1.1),
H could be linear, sublinear or superlinear.

It is interesting to notice the solution space of (1.2) pertaining (H14) or (H15). Em-
phasis will be given to the forcing function as compared to the results concerning (1.1).
It reveals that every bounded solution of (1.2) oscillates, if (H15) holds for all ranges of
p(n) and every unbounded solution of (1.2) oscillates, if (H14) holds except p(n) ≤ −1.
Here is a question that “what happened to the behaviour of solutions of (1.2), if the so-
lution is bounded and (H14) holds”. To this question, we state here the following results
without proof.

Theorem 5.1. Let 0 ≤ p(n) ≤ b < ∞. If (H0)–(H4), (H6), (H14) and (H16) hold, then
every solution of (1.2) either oscillates or converges to zero as n→∞.

Theorem 5.2. Let−1 < b ≤ p(n) ≤ 0. If (H0), (H2), (H6), (H14), (H17) and (H18) hold,
then every solution of (1.2) either oscillates or converges to zero as n→∞.

Theorem 5.3. Let −∞ < p(n) ≤ b < −1. If (H0), (H2), (H6), (H14) and (H17) hold,
then every bounded solution of (1.2) either oscillates or converges to zero as n→∞.
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