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Abstract

In this paper, we introduce a well-posed discrete right-focal fractional bound-
ary value problem in the case where the orderν of the fractional difference satisfies
1 < ν ≤ 2. We deduce Green’s function for this problem and prove certain prop-
erties about Green’s function. We show in the caseν = 2 that our results agree
with the previously known results for second-order discrete boundary value prob-
lems but that new results are obtained if1 < ν < 2. In particular, we show that
in great contrast to the case whenν = 2, Green’s function is not monotone in the
case when1 < ν < 2. Finally, we deduce some conditions under which positive
solutions to the boundary value problem exist as well as some conditions under
which the boundary value problem will have a unique solution.

AMS Subject Classifications: Primary: 26A33, 39A05, 39A12; Secondary: 33B15,
47H10.
Keywords: Discrete fractional calculus, Gamma function, Green’s function, right-focal
boundary value problem, fixed point theorem in cones.

1 Introduction

In this paper we consider existence results for a certain two-point boundary value prob-
lem of right-focal type for a fractional difference equation. A recent paper by Atici
and Eloe [6] produced a well-posed fractional boundary value problem (FBVP) of the
type we consider in the present work. However, their paper considered only the case
of Dirichlet boundary conditions. Given the interest in right-focal BVPs in the classical
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literature, the present paper can be considered an important extension of and parallel
to [6].

In the continuous case, the fractional calculus and associated differential equations
have been studied since the late 1600s. However, only in recent years has there been an
explosion of research in this area – see, for example, [2, 8, 9, 17, 21] and the references
therein. Moreover, it has been shown that fractional differential equations have nontriv-
ial applications in numerous diverse fields including electrical engineering, chemistry,
mathematical biology, control theory, and the calculus of variations – see, for exam-
ple [2, 18–20]. Especially interesting, as mentioned in [20], is that the fractional cal-
culus may provide more mathematically accurate epidemic models – an area of current
and important mathematical research.

However, as is mentioned in [6], there has been little progress made in developing
the theory of fractional difference equations or, moreover, the general theory of the frac-
tional calculus on an arbitrary time scale. In particular, the works cited in the previous
paragraph each explore fractional differential equations. Recently, though, there have
appeared a number of papers on the discrete fractional calculus, which has helped to
build up some of the basic theory of this area. For example, a recent work by Atici and
Şeng̈ul [7] shows that fractional difference equations may provide for useful biologi-
cal models. Moreover, each of the papers [5,11] explore certain properties of fractional
IVPs. In addition to these works, one can consult [3–6,12–15] and the references therein
to see the additional progress that has been made in the discrete fractional calculus. This
paper, then, can be considered a contribution to this new, emerging area of mathematics.

In this paper, we will be interested in the nonlinear finite discrete FBVP given by{
−∆νy(t) = f(t + ν − 1, y(t + ν − 1))

y(ν − 2) = 0 = ∆y(ν + b),
(1.1)

wheret ∈ [0, b + 1]N0, ν ∈ (1, 2], f : [ν − 1, ν + b]Nν−1 × R → R, andb ∈ N0. Thus,
this paper will offer results that complement and extend the exposition given in [6].

In particular, the outline of this paper is as follows. After stating some preliminary
results, which may be easily found in the existing literature on the discrete fractional
calculus, we first deduce the existence of a unique solution to the FBVP{

−∆νy(t) = h(t + ν − 1)

y(ν − 2) = 0 = ∆y(ν + b),
(1.2)

whereν ∈ (1, 2], t ∈ [0, b + 1]N0, andh : [ν − 1, ν + b]Nν−1 → R, by means of an
appropriate Green’s function. After this, we shall prove that Green’s function for (1.2)
satisfies the sort of useful properties that are available in the case whenν = 2. Finally,
we shall use these properties to show that under certain conditions that mirror those
given in the case whenν = 2, the more general problem (1.1) is guaranteed to have
either at least one positive solution (provided that we additionally assume thatf(t, y) is
nonnegative) or a unique solution.
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2 Preliminaries

We first wish to collect some basic lemmas that will be important to us in the sequel.
These and other related results and their proofs can be found, for example, in [3–6].
We begin with some basic properties regarding the discrete fractional derivative. These
results will play a decisive role in our proofs later in this paper.

Definition 2.1. Theνth fractional sum of a functionf defined onNa := {a, a + 1, . . . },
for ν > 0, is defined to be

∆−νf(t) = ∆−νf(t; a) :=
1

Γ(ν)

t−ν∑
s=a

(t− s− 1)ν−1f(s),

wheret ∈ {a + ν, a + ν + 1, . . . } =: Na+ν . We also define theνth fractional differ-
ence, whereν > 0 and0 ≤ N − 1 < ν ≤ N with N ∈ N, to be

∆νf(t) := ∆N∆−(N−ν)f(t),

wheret ∈ Na+N−ν .

We also recall the definition of theνth power falling.

Definition 2.2. We define

tν :=
Γ(t + 1)

Γ(t + 1− ν)
,

for anyt andν for which the right-hand side is defined. We also appeal to the convention
that if t + 1− ν is a pole of the Gamma function andt + 1 is not a pole, thentν = 0.

Next we require some operational properties of the fractional sum operator.

Lemma 2.3. Let t andν be any numbers for whichtν andtν−1 are defined. Then

∆tν = νtν−1.

Lemma 2.4. Assumeµ, ν > 0 andf : Na → R be a real-valued function. Moreover,
let µ, ν > 0. Then we find that

∆−ν
[
∆−µf(t)

]
= ∆−(µ+ν)f(t) = ∆−µ

[
∆−νf(t)

]
,

wheret ∈ Nµ+ν+a.

Lemma 2.5. Let0 ≤ N − 1 < ν ≤ N . Then

∆−ν∆νy(t) = y(t) + C1t
ν−1 + C2t

ν−2 + · · ·+ CN tν−N ,

for someCi ∈ R, with 1 ≤ i ≤ N .

We shall find Lemma 2.5 of special use in the next section of this paper.
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3 Derivation of Green’s Function

In order to help us analyze the nonlinear problem (1.1), we now wish to derive a Green’s
function for (1.2). Of particular note, we shall observe at the end of this section that in
caseν = 2, Green’s function we obtain in Theorem 3.1 below matches Green’s function
obtained in the case whenν = 2. Before stating this useful theorem, let us introduce
the following notation, which will be important in the sequel:

T1 :=
{
(t, s) ∈ [ν − 1, ν + b + 1]Nν−1 × [0, b + 1]N0 : 0 ≤ s < t− ν + 1 ≤ b + 2

}
,

T2 :=
{
(t, s) ∈ [ν − 1, ν + b + 1]Nν−1 × [0, b + 1]N0 : 0 ≤ t− ν + 1 ≤ s ≤ b + 2

}
.

We now state a result that is important in the sequel.

Theorem 3.1.The unique solution of the FBVP(1.2) is given by

y(t) :=
b+1∑
s=0

G(t, s)h(s + ν − 1),

whereG(t, s) is Green’s function for the problem

−∆νy(t) = 0, y(ν − 2) = 0 = ∆y(ν + b), (*)

where1 < ν ≤ 2, which is given by

G(t, s) :=
1

Γ(ν)


Γ(b + 3)tν−1

Γ(ν + b + 1)
(ν + b− s− 1)ν−2 − (t− s− 1)ν−1, (t, s) ∈ T1

Γ(b + 3)tν−1

Γ(ν + b + 1)
(ν + b− s− 1)ν−2, (t, s) ∈ T2.

Proof. Observe that by inverting the fractional difference operator coupled with an ap-
plication of Lemma 2.5, we find that a general solution of the fractional difference
equation in (1.2) is

y(t) = −∆−νh(t + ν − 1) + C1t
ν−1 + C2t

ν−2,

whence, by Definition 2.1, we get that

y(t) = − 1

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1h(s + ν − 1) + C1t
ν−1 + C2t

ν−2.

We now would like to determine the values ofC1 andC2 so that the boundary conditions
in (*) hold. To this end, applying the boundary conditiony(ν − 2) = 0, we find that

0 = −∆−νh(t + ν − 1)
∣∣
t=ν−2

+ C1(ν − 2)ν−1 + C2(ν − 2)ν−2. (3.1)
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Now, it is easy to show by Definition 2.2 that(ν − 2)ν−1 = 0. Similarly, Definition 2.2
implies at once that(ν − 2)ν−2 = Γ(ν − 1). Finally,

−∆−νh(t + ν − 1)
∣∣
t=ν−2

= − 1

Γ(ν)

−2∑
s=0

(t− s− 1)ν−1h(s + ν − 1) = 0

by the standard convention on sums. So, in summary, we find that (3.1) implies that
C2 = 0.

Similarly, we can apply the right boundary condition – namely,∆y(ν + b) = 0.
Doing so, we find that

0 = ∆y(ν + b) =
{
∆
[
−∆−νh(t + ν − 1)

]}
t=ν+b

+ ∆
[
C1t

ν−1
]
t=ν+b

. (3.2)

Note that

∆
[
tν−1

]
t=ν+b

= (ν − 1) · Γ(ν + b + 1)

Γ(b + 3)
(3.3)

and, as it is known that∆∆−ν = ∆1−ν , that{
∆
[
∆−νh(t + ν − 1)

]}
t=ν+b

=
[
∆1−νh(t + ν − 1)

]
t=ν+b

=

[
1

Γ(ν − 1)

t−ν+1∑
s=0

(t− s− 1)ν−2h(s + ν − 1)

]
t=ν+b

=
1

Γ(ν − 1)

b+1∑
s=0

(ν + b− s− 1)ν−2h(s + ν − 1).

(3.4)

Putting (3.2), (3.3), and (3.4) together, it is a simple matter to show that

C1 =
[∆∆−νh(t + ν − 1)]t=ν+b

(ν−1)Γ(ν+b+1)
Γ(b+3)

=
Γ(b + 3)

Γ(ν)Γ(ν + b + 1)

b+1∑
s=0

(ν+b−s−1)ν−2h(s−ν+1).

(3.5)
But with (3.5) in hand, we can determiney(t) exactly. In particular, we find that

y(t) = −∆−νh(t + ν − 1) + C1t
ν−1

= − 1

Γ(ν)

t−ν∑
s=0

(t− s− 1)ν−1h(s + ν − 1)

+
Γ(b + 3)tν−1

Γ(ν)Γ(ν + b + 1)

b+1∑
s=0

(ν + b− s− 1)ν−2h(s− ν + 1)

=
1

Γ(ν)

{
t−ν∑
s=0

[
Γ(b + 3)tν−1

Γ(ν + b + 1)
(ν + b− s− 1)ν−2 − (t− s− 1)ν−1

]
h(s + ν + 1)

}

+
1

Γ(ν)

b+1∑
s=t−ν+1

Γ(b + 3)tν−1

Γ(ν + b + 1)
(ν + b− s− 1)ν−2h(s− ν + 1),
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from which it is immediately clear that we may write

y(t) =
b+1∑
s=0

G(t, s)h(s + ν − 1),

where

G(t, s) :=
1

Γ(ν)


Γ(b + 3)tν−1

Γ(ν + b + 1)
(ν + b− s− 1)ν−2 − (t− s− 1)ν−1, (t, s) ∈ T1

Γ(b + 3)tν−1

Γ(ν + b + 1)
(ν + b− s− 1)ν−2, (t, s) ∈ T2

is Green’s function for (*). This completes the proof.

Remark3.2. Observe thatG(ν − 2, s) = 0, for eachs ∈ [0, b + 1]N0.

Remark3.3. Let us note for the reader that in case we putν = 2 in Theorem 3.1, it
follows that we get the “usual” Green function, just as we might hope would happen.
Indeed, in caseν = 2 we find that (in casea = 0)

G(t, s) =

{
s + 1, 0 ≤ s < t− 1 ≤ b + 2

t, 0 ≤ t− 1 ≤ s ≤ b + 2,

with G(t, s) defined on[1, b + 3]N0 × [0, b + 1]N0 , which accords with the usual results.

Remark3.4. As is implied by the definition of the setsT1 andT2 as well the form of
G(t, s) as given in Theorem 3.1, we have that Green’s function,G(t, s), is defined on the
set[ν−2, ν+b+1]Nν−2×[0, b+1]N0. Incidentally, it is easy to show thatG(t, b+2) = 0,
for each admissiblet. So,G could be extended to[ν − 2, ν + b + 1]Nν−2 × [0, b + 2]N0

without difficulty, but we do not require this in the sequel.

4 Properties of Green’s Function

In this section of the paper, we wish to prove that our Green’s functionG(t, s) satisfies,
with appropriate and simple modifications, the usual classical properties. Certain of
these properties will be crucial when we prove our existence theorems in the final section
of this paper. We begin by stating a lemma.

Lemma 4.1 (See [6]).Let ν be any positive real number and leta and b be two real
numbers satisfyingν < a ≤ b. Then the following hold.

(i)
1

xν
is a decreasing function forx ∈ (ν, +∞)N.

(ii)
(a− x)ν

(b− x)ν
is a decreasing function forx ∈ [0, a− ν)N0.
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We now state and prove the first of a trio of propositions regardingG(t, s).

Proposition 4.2. The functionG(t, s) defined in Theorem 3.1 satisfiesG(t, s) ≥ 0 for
all t ∈ [ν − 1, ν + b + 1]Nν−1 and s ∈ [0, b + 1]N0 , where[ν − 1, ν + b + 1]Nν−1 :=
{ν − 1, ν, . . . , ν + b + 1}.

Proof. To prove this proposition, we shall show directly thatG(t, s) > 0 for each
(t, s) ∈ [ν−1, ν + b+1]Nν−1 × [0, b+1]N0. For simplicity, we shall look atΓ(ν)G(t, s),
for Γ(ν) > 0 so that ifΓ(ν)G(t, s) > 0, then at once it follows thatG(t, s) > 0, too.

First notice that for(t, s) ∈ T2, we have that

Γ(ν)G(t, s) =
Γ(b + 3)tν−1

Γ(ν + b + 1)
(ν + b− s− 1)ν−2

=
Γ(b + 3)Γ(t + 1)Γ(ν + b− s)

Γ(ν + b + 1)Γ(t− ν + 2)Γ(b− s + 2)

> 0,

clearly.
On the other hand, for(t, s) ∈ T1, we find that

Γ(ν)G(t, s) =
Γ(b + 3)tν−1(ν + b− s− 1)ν−2

Γ(ν + b + 1)
− (t− s− 1)ν−1

=
Γ(b + 3)Γ(t + 1)Γ(ν + b− s)

Γ(ν + b + 1)Γ(t + 2− ν)Γ(b− s + 2)
− Γ(t− s)

Γ(t− s− ν + 1)
.

We claim that

Γ(b + 3)Γ(t + 1)Γ(ν + b− s)

Γ(ν + b + 1)Γ(t + 2− ν)Γ(b− s + 2)
− Γ(t− s)

Γ(t− s− ν + 1)
> 0.

To see that this is true, note that it suffices to show that

Γ(b + 3)Γ(t + 1)Γ(ν + b− s)Γ(t− s− ν + 1)

Γ(ν + b + 1)Γ(t + 2− ν)Γ(b− s + 2)Γ(t− s)
> 1

whenever(t, s) ∈ T1. To prove this latter claim, we shall show that for each admissible
s andt, we have both that

Γ(b + 3)Γ(ν + b− s)

Γ(ν + b + 1)Γ(b− s + 2)
≥ 1 (4.1)

and that
Γ(t + 1)Γ(t− s− ν + 1)

Γ(t + 2− ν)Γ(t− s)
> 1, (4.2)

from which the desired claim will follow at once, clearly.
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To see that (4.1) holds, lets0 be an arbitrary but fixed element of[0, b + 1]N0. Then
we find that

Γ(b + 3)Γ(ν + b− s)

Γ(ν + b + 1)Γ(b− s + 2)
=

Γ(b + 3)Γ (ν + b− s0)

Γ(ν + b + 1)Γ (b− s0 + 2)

=
(b + 2)!Γ (ν + b− s0)

Γ(ν + b + 1) (b− s0 + 1)!

=
(b + 2)(b + 1) · · · (b− s0 + 2)

(b + ν)(b + ν − 1) · · · (b + ν − s0)
.

(4.3)

But notice that
b + 2

b + ν
≥ 1,

b + 1

b + ν − 1
≥ 1, . . . ,

b− s0 + 2

b + ν − s0

≥ 1 in expression (4.3)

above, with equality occurring if and only ifν = 2. Thus, we conclude that

Γ(b + 3)Γ(ν + b− s)

Γ(ν + b + 1)Γ(b− s + 2)
≥ 1,

which establishes (4.1).
On the other hand, to see that (4.2) holds, lets0, once again, be arbitrary but fixed

such thats0 ∈ [0, b + 1]N0. Then we have that fort to be admissible,t = s0 + k + ν, for
some0 ≤ k ≤ b− s0 + 1 with k ∈ N0. But then it follows that

Γ(t + 1)Γ(t− s− ν + 1)

Γ(t + 2− ν)Γ(t− s)

=
Γ (s0 + k + ν + 1)

Γ (s0 + k + 2)
· Γ(k + 1)

Γ(k + ν)

=
(ν + s0 + k) (ν + s0 + k − 1) · · · (ν + k) Γ(k + ν)

(s0 + k + 1)!
· k!

Γ(k + ν)

=
(ν + s0 + k) · · · (ν + k) · k!

(s0 + k + 1)!

=
(s0 + k + ν) (s0 + k − 1 + ν) · · · (k + ν)

(s0 + k + 1) (s0 + k) · · · (k + 1)
.

(4.4)

Notice, however, that each of the numerator and denominator in (4.4) has(s0 + 1) terms.

Moreover, if we consider the terms in pairs, as in
s0 + k + ν

s0 + k + 1
,

s0 + k − 1 + ν

s0 + k
, . . . ,

k + ν

k + 1
, then we notice that each pair is greater than unity. Indeed, as1 < ν ≤ 2, it

follows at once, for example, that
s0 + k + ν

s0 + k + 1
> 1. As this argument may be applied to

each of the(s0 + 1) terms in (4.3), it follows that

Γ(t + 1)Γ(t− s− ν + 1)

Γ(t + 2− ν)Γ(t− s)
> 1,
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which establishes (4.2).
Finally, combining (4.1) and (4.2), we see at once that

Γ(b + 3)Γ(t + 1)Γ(ν + b− s)Γ(t− s− ν + 1)

Γ(ν + b + 1)Γ(t + 2− ν)Γ(b− s + 2)Γ(t− s)
> 1,

whenever(t, s) ∈ T1, whenceG(t, s) ≥ 0 whenever(t, s) ∈ T1. Together with the
first part of the proof, we find thatG(t, s) ≥ 0 for all t ∈ [ν − 1, ν + b + 1]Nν−1 and
s ∈ [0, b + 1]N0 , as claimed.

Before proving Proposition 4.4 below, we need an easy but important preliminary
lemma.

Lemma 4.3. Fix k ∈ N and let{mj}k
j=1, {nj}k

j=1 ⊆ (0, +∞) such that

max
1≤j≤k

mj ≤ min
1≤j≤k

nj

and that for at least onej0, 1 ≤ j0 ≤ k, we have thatmj0 < nj0. Then for fixed
α0 ∈ (0, 1), it follows that(

n1

n1 + α0

· . . . · nk

nk + α0

)(
m1 + α0

m1

· . . . · mk + α0

mk

)
> 1.

Proof. Fix an indexj0, wherej0 is one of the indices, of which there exists at least
one, for whichnj0 > mj0 . Notice that asnj0 > mj0 and α0 > 0, it follows that
nj0α0 > mj0α0, whencemj0nj0 + nj0α0 > mj0nj0 + mj0α0, so that

mj0 + α0

mj0

>
nj0 + α0

nj0

,

whence
nj0

nj0 + α0

· mj0 + α0

mj0

> 1.

But now the claim follows at once by repeating the above steps for each of the remaining
j0 − 1 terms and observing that the product ofj terms, each of which is at least unity
and at least one of which exceeds unity, is greater than unity.

Proposition 4.4. For G(t, s) defined in Theorem 3.1, it follows that

max
t∈[ν−1,ν+b+1]Nν−1

G(t, s) = G(s + ν − 1, s),

whenevers ∈ [0, b + 1]N0.



204 C. S. Goodrich

Proof. Before beginning this proof, let us make one preliminary observation. Indeed,
note that[∆tG(t, s)]t=ν+b = G(ν + b + 1, s)−G(ν + b, s) = 0, for each admissibles,
which is easy to verify by direct computation. Of course, this must be true by virtue of
the fact thatG must satisfy the right-hand boundary condition in each of FBVPs (1.1)
and (1.2). Practically, this means that

max
t∈[ν−1,ν+b+1]Nν−1

G(t, s) = max
t∈[ν−1,ν+b]Nν−1

G(t, s),

for each admissibles. Consequently, this means that in the sequel, we can effectively
ignore what happens att = ν + b + 1 on account of the above noted relationship, and
we do just that.

Now, let us consider the differenceΓ(ν)∆tG(t, s) for (t, s) ∈ T1. In this case, we
find that

Γ(ν)∆tG(t, s)

= ∆t

[
Γ(b + 3)tν−1

Γ(ν + b + 1)
(ν + b− s− 1)ν−2 − (t− s− 1)ν−1

]
=

Γ(b + 3)(ν − 1)tν−2

Γ(ν + b + 1)
(ν + b− s− 1)ν−2 − (ν − 1)(t− s− 1)ν−2

=
Γ(b + 3)(ν − 1)tν−2(ν + b− s− 1)ν−2 − (ν − 1)Γ(ν + b + 1)(t− s− 1)ν−2

Γ(ν + b + 1)

=
ν − 1

Γ(ν + b + 1)

[
Γ(b + 3)tν−2(ν + b− s− 1)ν−2 − Γ(ν + b + 1)(t− s− 1)ν−2

]
.

Note that it is clear from the above expression that in caseν = 2, we find∆tG(t, s) = 0,
as expected. Consequently, let us assume in the sequel that1 < ν < 2. Observe

that
ν − 1

Γ(ν + b + 1)
> 0, clearly. So, it follows thatΓ(ν)∆tG(t, s) < 0 (and thus that

∆tG(t, s) < 0, seeing asΓ(ν) > 0) provided that

Γ(b + 3)tν−2(ν + b− s− 1)ν−2 < Γ(ν + b + 1)(t− s− 1)ν−2

and this is true if and only if

Γ(ν + b + 1)Γ(t− s)Γ(b− s + 2)

Γ(b + 3)Γ(ν + b− s)Γ(t− s− ν + 2)tν−2
> 1. (4.5)

To show that (4.5) holds, let us, as in the proof of Proposition 4.2, suppose thats0 is a
fixed but arbitrary element of[0, b+1]N0. Then it follows, as before, thatt = s0 +k+ν,
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wherek ∈ N such that0 ≤ k ≤ b− s0. But we then find that

Γ(ν + b + 1)Γ(t− s)Γ(b− s + 2)

Γ(b + 3)Γ(ν + b− s)Γ(t− s− ν + 2)tν−2

=
Γ(ν + b + 1)Γ (s0 + k + ν − s0) Γ (b− s0 + 2) Γ (s0 + k + ν − ν + 3)

Γ(b + 3)Γ (ν + b− s0) Γ (s0 + k + ν − s0 − ν + 2) Γ (s0 + k + ν + 1)

=
Γ(ν + b + 1)Γ(k + ν)Γ (b− s0 + 2) Γ (s0 + k + 3)

Γ(b + 3)Γ (ν + b− s0) Γ(k + 2)Γ (s0 + k + ν + 1)

=
Γ(ν + b + 1)Γ(k + ν) (b− s0 + 1)! (s0 + k + 2)!

(b + 2)!Γ (ν + b− s0) (k + 1)!Γ (s0 + k + ν + 1)

=
[(ν + b)(ν + b− 1) · · · (ν + b− s0)] (b− s0 + 1)! (s0 + k + 2)!

(b + 2)!(k + 1)! [(s0 + k + ν) (s0 + k + ν − 1) · · · (k + ν)]

=
(ν + b)(ν + b− 1) · · · (ν + b− s0)

(b + 2)(b + 1) · · · (b− s0 + 2)
· (s0 + k + 2) (s0 + k + 1) · · · (k + 2)

(s0 + k + ν) (s0 + k + ν − 1) · · · (k + ν)
.

(4.6)

Observe that each of the numerators and denominators of each of the two fractions in
(4.6) has exactlys0 + 1 factors. Moreover, observe that in the case of the first fraction,

we can consider this fraction as the product ofs0 +1 factors as in
ν + b

b + 2
· ν + b− 1

b + 1
· . . . ·

ν + b− s0

b− s0 + 2
. Now, putα0 := 2−ν and note thatα0 ∈ (0, 1). Also putnj := ν+b+(1−j)

for 1 ≤ j ≤ s0 + 1. Then we find that

(ν + b)(ν + b− 1) · · · (ν + b− s0)

(b + 2)(b + 1) · · · (b− s0 + 2)
=

s0+1∏
j=1

nj

nj + α0

,

where the finite sequence{nj}s0+1
j=1 ⊆ (0,∞) and the numberα0 satisfy the hypotheses

of Lemma 4.3. In a completely similar way, if we putmj := k + ν + (j − 1), then we
find that

(s0 + k + 2) (s0 + k + 1) · · · (k + 2)

(s0 + k + ν) (s0 + k + ν − 1) · · · (k + ν)
=

s0+1∏
j=1

mj + α0

mj

,

which again is of the form in Lemma 4.3, for{mj}s0+1
j=1 ⊆ (0,∞). Consequently, with

mj, nj, andα0 defined as above, we note that

Γ(ν + b + 1)Γ(t− s)Γ(b− s + 2)

Γ(b + 3)Γ(ν + b− s)Γ(t− s− ν + 2)tν−2

=
(ν + b)(ν + b− 1) · · · (ν + b− s0)

(b + 2)(b + 1) · · · (b− s0 + 2)
· (s0 + k + 2) (s0 + k + 1) · · · (k + 2)

(s0 + k + ν) (s0 + k + ν − 1) · · · (k + ν)

=

(
s0+1∏
j=1

nj

nj + α0

)(
s0+1∏
j=1

mj + α0

mj

)
.

(4.7)
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Now, in order to apply Lemma 4.3 to (4.7) above, we must consider three cases. First, it
is possible, depending upon the choice ofs0, k, andb, that there are no repeated factors
between the two products in (4.7). In this case, we see thatmax

j
mj < min

j
nj, and so,

by the argument in the preceding paragraph, we may immediately apply Lemma 4.3 to
deduce the bound given in (4.5).

Secondly, it is possible that some factors are repeated between the two products in
(4.7). In particular, there may bep such repeated factors, with1 ≤ p ≤ s0, in each
of the numerators and denominators of each of the products in (4.7) that cancel. This
cancellation will leaves0 + 1 − p factors – in particular, in this case it is easy to show
that

Γ(ν + b + 1)Γ(t− s)Γ(b− s + 2)

Γ(b + 3)Γ(ν + b− s)Γ(t− s− ν + 2)tν−2

=

(
s0+1∏
j=1

nj

nj + α0

)(
s0+1∏
j=1

mj + α0

mj

)

=

(
s0+1−p∏

j=1

nj

nj + α0

)(
s0+1−p∏

j=1

mj + α0

mj

)
.

(4.8)

But then Lemma 4.3 may be applied to (4.8) above to yield the bound in (4.5) in this
case, too.

Finally, if k = b− s0, then it equally easy to show that product (4.6) is exactly unity
– that is,

Γ(ν + b + 1)Γ(t− s)Γ(b− s + 2)

Γ(b + 3)Γ(ν + b− s)Γ(t− s− ν + 2)tν−2
=

(
s0+1∏
j=1

nj

nj + α0

)(
s0+1∏
j=1

mj + α0

mj

)
= 1.

However, this corresponds to the case∆t [G (t, s0)]t=ν+b, and we observed at the begin-
ning of this proof that∆t [G (t, s0)]t=ν+b = 0, as it must from the boundary conditions.

So, in summary, in each of the three cases we can safely apply Lemma 4.3 to (4.6)
to get that

Γ(ν + b + 1)Γ(t− s)Γ(b− s + 2)

Γ(b + 3)Γ(ν + b− s)Γ(t− s− ν + 2)tν−2
> 1,

so that (4.5) holds. By the earlier observation, then, it follows at once that∆tG(t, s) < 0
whenever0 ≤ s < t− ν + 1 ≤ b + 1, as desired.

We next argue that∆tG(t, s) > 0 for 0 ≤ t− ν + 1 ≤ s ≤ b + 1. To see that this is
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true, we simply notice that for0 ≤ t− ν + 1 ≤ s ≤ b + 1,

∆tG(t, s) = ∆t

[
Γ(b + 3)tν−1

Γ(ν + b + 1)
(ν + b− s− 1)ν−2

]
=

Γ(b + 3)(ν − 1)tν−2

Γ(ν + b + 1)
(ν + b− s− 1)ν−2

=
Γ(b + 3)(ν − 1)Γ(t + 1)Γ(ν + b− s)

Γ(ν + b + 1)Γ(t− ν + 3)Γ(b− s + 2)
.

(4.9)

Now, observe that each factor in (4.9) is strictly positive. Therefore, we conclude that
∆tG(t, s) > 0 in case0 ≤ t− ν + 1 ≤ s ≤ b + 1, whenceG(t, s) is increasing on that
interval, too.

In summary, then, we have thatG(t, s) is increasing fort− ν + 1 ≤ s ≤ b + 1 and
decreasing for0 ≤ s < t− ν + 1. And from this we may conclude that

max
t∈[ν−1,ν+b+1]Nν−1

G(t, s) = G(s + ν − 1, s),

whenevers ∈ [0, b + 1]N0, as desired.

Remark4.5. Interestingly, we notice that in caseν ∈ (1, 2), Proposition 4.4 demon-
strates thatG(t, s) is not constant fort > s + ν − 1. This contrasts with the classical
case,ν = 2, in which Green’s function attains its maximum att = s and then is constant
for t > s. Furthermore, asν → 2 from the left, our Green’s function does tend to the
known Green function in caseν = 2.

Before proving our final proposition, let us introduce the constantsγ1 andγ2, which
will be important not only in the following proposition but also in the final section of
this paper:

γ1 :=

(
b+ν
4

)ν−1

(b + ν)ν−1
,

γ2 :=
1(

3(b+ν)
4

)ν−1

(3(b + ν)

4

)ν−1

− b + 1

Γ(b + 3)
·

(
3(b+ν)

4
− 1
)ν−1

Γ(ν + b + 1)

(ν + b− 1)ν−1

 .

Proposition 4.6. Assume that

[
b + ν

4
,
3(b + ν)

4

]
∩ Nν−1 6= ∅. For G(t, s) defined in

Theorem 3.1, it follows that there exists a numberγ ∈ (0, 1), where

γ := min {γ1, γ2} ,

with γ1 andγ2 as above, such that

min
t∈[ b+ν

4
,
3(b+ν)

4 ]
G(t, s) ≥ γ · max

t∈[ν−1,ν+b+1]Nν−1

G(t, s) = γG(s + ν − 1, s),

for s ∈ [0, b + 1]N0.
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Proof. Let us begin by noting that

G(t, s)

G(s + ν − 1, s)

=


tν−1

(s + ν − 1)ν−1
− (t− s− 1)ν−1Γ(ν + b + 1)

Γ(b + 3)(s + ν − 1)ν−1(ν + b− s− 1)ν−2
, (t, s) ∈ T1

tν−1

(s + ν − 1)ν−1
, (t, s) ∈ T2,

which is obtained by direct calculation. Now, fors ≥ t − ν + 1 and
b + ν

4
≤ t ≤

3(b + ν)

4
, we have that

G(t, s)

G(s + ν − 1, s)
=

tν−1

(s + ν − 1)ν−1
≥

(
b+ν
4

)ν−1

((b + 1) + ν − 1)ν−1
=

(
b+ν
4

)ν−1

(b + ν)ν−1
, (4.10)

becausetα is increasing int for α ∈ (0, 1).
On the other hand, the proof of Proposition 4.4 shows thatG(t, s) is decreasing in

cases < t − ν + 1. Consequently, fors < t − ν + 1 andt ∈
[
b + ν

4
,
3(b + ν)

4

]
it

follows that

min
t∈[ b+ν

4
,
3(b+ν)

4 ]

G(t, s)

G(s + ν − 1, s)

=

[
tν−1

(s + ν − 1)ν−1
− (t− s− 1)ν−1Γ(ν + b + 1)

Γ(b + 3)(s + ν − 1)ν−1(ν + b− s− 1)ν−2

]
t=

3(b+ν)
4

=

(
3(b+ν)

4

)ν−1

(s + ν − 1)ν−1
−

(
3(b+ν)

4
− s− 1

)ν−1

Γ(ν + b + 1)

Γ(b + 3)(s + ν − 1)ν−1(ν + b− s− 1)ν−2
.

Now, put

α(s) :=
1

(s + ν − 1)ν−1

(3(b + ν)

4

)ν−1

−

(
3(b+ν)

4
− s− 1

)ν−1

Γ(ν + b + 1)

Γ(b + 3)(ν + b− s− 1)ν−2

 .

Notice that

(ν + b− s− 1)ν−2 =
(ν + b− s− 1)ν−1

b− s + 1
,

which is a simple consequence of Definition 2.2. Furthermore, observe that by Lemma
4.1, part (ii) we find that (

3(b+ν)
4

− s− 1
)ν−1

(ν + b− s− 1)ν−1
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is decreasing for0 ≤ s ≤ 3(b + ν)

4
− ν + 1. Consequently, these two observations

together with an application of Lemma 4.1, part (i) imply that

α(s)

=
1

(s + ν − 1)ν−1

(3(b + ν)

4

)ν−1

−

(
3(b+ν)

4
− s− 1

)ν−1

Γ(ν + b + 1)

Γ(b + 3)(ν + b− s− 1)ν−2


=

1

(s + ν − 1)ν−1

(3(b + ν)

4

)ν−1

−

(
3(b+ν)

4
− s− 1

)ν−1

Γ(ν + b + 1)

Γ(b+3)
b−s+1

· (ν + b− s− 1)ν−1


≥ 1

(s + ν − 1)ν−1

(3(b + ν)

4

)ν−1

− b + 1

Γ(b + 3)
·

(
3(b+ν)

4
− 1
)ν−1

Γ(ν + b + 1)

(ν + b− 1)ν−1


≥ 1(

3(b+ν)
4

)ν−1

(3(b + ν)

4

)ν−1

− b + 1

Γ(b + 3)
·

(
3(b+ν)

4
− 1
)ν−1

Γ(ν + b + 1)

(ν + b− 1)ν−1

 ,

where to get the first inequality we sets = 0 in the expression in the square brackets.
As a result of this analysis, we conclude that in cases < t − ν + 1 and t ∈[

b + ν

4
,
3(b + ν)

4

]
,

G(t, s)

G(s + ν − 1, s)

≥ 1(
3(b+ν)

4

)ν−1

(3(b + ν)

4

)ν−1

− b + 1

Γ(b + 3)
·

(
3(b+ν)

4
− 1
)ν−1

Γ(ν + b + 1)

(ν + b− 1)ν−1

 .

(4.11)

Finally, then, upon combining (4.10) and (4.11), we deduce that

min
b+ν
4
≤t≤ 3(b+ν)

4

G(t, s) ≥ γ max
t∈[ν−1,ν+b+1]Nν−1

G(t, s) = γG(s + ν − 1, s),

where we put
γ := min {γ1, γ2} ,

which completes the proof.
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Remark4.7. Note that it is the case that0 < γ < 1 in Proposition 4.6. Indeed, it is clear

that0 <

(
b+ν
4

)ν−1

(b + ν)ν−1
< 1. On the other hand, to see that

0 <
1(

3(b+ν)
4

)ν−1

(3(b + ν)

4

)ν−1

− b + 1

Γ(b + 3)
·

(
3(b+ν)

4
− 1
)ν−1

Γ(ν + b + 1)

(ν + b− 1)ν−1

 < 1,

we may observe that

0 <
b + 1

Γ(b + 3)
· 1(

3(b+ν)
4

)ν−1 ·
Γ
(

3(b+ν)
4

)
Γ(ν + b + 1)Γ(b + 1)

Γ
(

3(b+ν)
4

− ν + 1
)

Γ(ν + b)

=
1

b + 2
·
Γ
(

3(b+ν)
4

)
Γ(ν + b + 1)Γ

(
3(b+ν)

4
− ν + 2

)
Γ
(

3(b+ν)
4

+ 1
)

Γ(ν + b)Γ
(

3(b+ν)
4

− ν + 1
)

=
(b + ν)

(
3(b+ν)

4
− ν + 1

)
(b + 2)

(
3(b+ν)

4

)
< 1,

which suffices to prove the claim.

Remark4.8. In case we putν = 2 in Proposition 4.6, we find by direct calculation that

γ := min

{
1

4
,

4

3b + 6

}
.

Remark4.9. It should be noted that while the right-focal problem is simpler than the
Dirichlet problem in the case whenν = 2, it is more difficult in the fractional case (i.e.,
in case1 < ν < 2) as a comparison of the above proofs to the corresponding proofs
in [6] shows.

5 Existence and Uniqueness Theorems

In this final section of the paper, we wish to deduce certain representative existence and
uniqueness theorems. We begin with a preliminary and well known lemma, which can
be found, for example, in [1] and is due to Krasnosel’skiı̆.

Lemma 5.1. LetB be a Banach space and letK ⊆ B be a cone. Assume thatΩ1 and
Ω2 are open sets contained inB such that0 ∈ Ω1 andΩ1 ⊆ Ω2. Assume, further, that
T : K ∩

(
Ω2 \ Ω1

)
→ K is a completely continuous operator. Then if either

(i) ‖Ty‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω1 and‖Ty‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω2, or
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(ii) ‖Ty‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω1 and‖Ty‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω2,

thenT has at least one fixed point inK ∩
(
Ω2 \ Ω1

)
.

We now consider the nonlinear equation (1.1). We notice thaty solves (1.1) if and
only if y is a fixed point of the operator

Ty :=
b+1∑
s=0

G(t, s)f(s + ν − 1, y(s + ν − 1)),

whereG is Green’s function derived in this paper andT : B → B, whereB is the
Banach spaceB :=

{
y : [ν − 2, ν + b + 1]Nν−2 → R : y(ν − 2) = ∆y(ν + b) = 0

}
equipped with the usual supremum norm,‖ · ‖.

Let us also make the following declarations, which will be used in the sequel:

η :=
1∑b+1

s=1 G(s + ν − 1, s)
,

λ :=
1∑b 3(ν+b)

4
−ν+1c

s=d ν+b
4
−ν+1e G

(⌊
b+1
2

⌋
+ ν, s

) .

Let us also introduce two conditions on the behavior off that will be useful in the
sequel.

(C1) There exists a numberr > 0 such thatf(t, y) ≤ ηr whenever0 ≤ y ≤ r.

(C2) There exists a numberr > 0 such thatf(t, y) ≥ λr wheneverγr ≤ y ≤ r.

Remark5.2. The technique that we use to deduce the existence of at least one positive
solution is very similar to the techniques found in the classical literature on differential
equations – see, for example, [10].

We now can prove the following existence result.

Theorem 5.3.Suppose that there are distinctr1, r2 > 0 such that condition(C1) holds
at r = r1 and condition(C2) holds atr = r2. Suppose also thatf(t, y) ≥ 0 and
continuous. Then the FBVP(1.1) has at least one positive solution, sayy0, such that
‖y0‖ lies betweenr1 andr2.

Proof. We shall assume without loss of generality that0 < r1 < r2. Consider the

setK :=

{
y ∈ B : y(t) ≥ 0 and min

t∈[ b+ν
4

,
3(b+ν)

4 ]
y(t) ≥ γ‖y‖

}
, which is a cone with
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K ⊆ B. Observe thatT : K → K, for we observe both that

min
t∈[ b+ν

4
,
3(b+ν)

4 ]
(Ty)(t) = min

t∈[ b+ν
4

,
3(b+ν)

4 ]

b+1∑
s=0

G(t, s)f(s + ν − 1, y(s + ν − 1))

≥ γ
b+1∑
s=0

G(s + ν − 1, s)f(s + ν − 1, y(s + ν − 1))

= γ max
t∈[ν−1,ν+b+1]Nν−1

b+1∑
s=0

G(t, s)f(s + ν − 1, y(s + ν − 1))

= γ‖Ty‖,

and that(Ty)(t) ≥ 0 whenevery ∈ K, whenceTy ∈ K, as claimed. Also, it is easy to
see thatT is a completely continuous operator.

Now, putΩ1 := {y ∈ K : ‖y‖ < r1}. Note that fory ∈ ∂Ω1, we have that‖y‖ = r1

so that condition (C1) holds for ally ∈ ∂Ω1. So, fory ∈ K ∩ ∂Ω1, we find that

‖Ty‖ = max
t∈[ν−1,ν+b+1]Nν−1

b+1∑
s=0

G(t, s)f(s + ν − 1, y(s + ν − 1))

≤
b+1∑
s=0

G(s + ν − 1, s)f(s + ν − 1, y(s + ν − 1))

≤ ηr1

b+1∑
s=0

G(s + ν − 1, s)

= r1

= ‖y‖,

whence we find that‖Ty‖ ≤ ‖y‖ whenevery ∈ K∩∂Ω1. Thus we get that the operator
T is a cone compression onK ∩ ∂Ω1.

On the other hand, putΩ2 := {y ∈ K : ‖y‖ < r2}. Note that fory ∈ ∂Ω2, we
have that‖y‖ = r2 so that condition (C2) holds for ally ∈ ∂Ω2. Also note that
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{⌊
b + 1

2

⌋
+ ν

}
⊂
[
b + ν

4
,
3(b + ν)

4

]
. So, fory ∈ K ∩ ∂Ω2, we find that

Ty

(⌊
b + 1

2

⌋
+ ν

)
=

b+1∑
s=0

G

(⌊
b + 1

2

⌋
+ ν, s

)
f(s + ν − 1, y(s + ν − 1))

≥
b 3(ν+b)

4
−ν+1c∑

s=d ν+b
4
−ν+1e

G

(⌊
b + 1

2

⌋
+ ν, s

)
f(s + ν − 1, y(s + ν − 1))

≥ λr2

b 3(ν+b)
4

−ν+1c∑
s=d ν+b

4
−ν+1e

G

(⌊
b + 1

2

⌋
+ ν, s

)
= r2,

whence‖Ty‖ ≥ ‖y‖, whenevery ∈ K∩∂Ω2. Thus we get that the operatorT is a cone
expansion onK ∩ ∂Ω2. So, it follows by Lemma 5.1 that the operatorT has a fixed
point. But this means that (1.1) has a positive solution, sayy0, with r1 ≤ ‖y0‖ ≤ r2, as
claimed.

Remark5.4. Of course, it is possible to extend Theorem 5.3. In particular, one can
provide conditions under which multiple positive solutions will exist. As the author has
already presented such results in the Dirichlet case (cf., [12]), they will not be repeated
with the dual results here.

If we assume thatf satisfies a Lipschitz condition, then we can get uniqueness in
addition to existence. This is the content of Theorem 5.6 below. We require first a
preliminary lemma.

Lemma 5.5. For G(t, s) as defined in Theorem 3.1, we find that

max
t∈[ν−1,ν+b+1]Nν−1

b+1∑
s=0

G(t, s) ≤ (b + 2)Γ(b + ν + 2)

Γ(ν + 1)Γ(b + 2)
.

Proof. By invoking Theorem 3.1 together with Proposition 4.4 we find that

G(s + ν − 1, s) =
Γ(b + 3)(s + ν − 1)ν−1Γ(ν + b− s)

Γ(ν)Γ(ν + b + 1)Γ(b− s + 2)

≤ (b + 2)!Γ(b + 2− s)(s + ν − 1)ν−1

Γ(ν)(b + 1)!Γ(b− s + 2)

=
(b + 2)

Γ(ν)
(s + ν − 1)ν−1,
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from which it follows that

max
t∈[ν−1,ν+b+1]Nν−1

b+1∑
s=0

G(t, s) ≤
b+1∑
s=0

b + 2

Γ(ν)
(s + ν − 1)ν−1

=
b + 2

Γ(ν)

[
1

ν
(s + ν − 1)ν

]b+2

s=0

=
b + 2

Γ(ν)
· 1

ν
(b + ν + 1)ν

=
(b + 2)Γ(b + ν + 2)

Γ(ν + 1)Γ(b + 2)
,

as claimed.

Now we prove a uniqueness theorem by using the Banach contraction theorem,
which can be found, for example, in [22].

Theorem 5.6. Suppose thatf(t, y) satisfies a Lipschitz condition iny with Lipschitz
constantα – that is,|f (t, y2)− f (t, y1)| ≤ α |y2 − y1| for all (t, y1), (t, y2). Then it
follows that if

(b + 2)Γ(b + ν + 2)

Γ(ν + 1)Γ(b + 2)
<

1

α
,

then(1.1)has a unique solution.

Proof. Let y1, y2 ∈ B, whereB is the Banach space described earlier. Then we find that

‖Ty2 − Ty1‖

≤ max
t∈[ν−1,ν+b+1]Nν−1

b+1∑
s=0

[
|G(t, s)|

· |f (s + ν − 1, y2(s + ν − 1))− f (s + ν − 1, y1(s + ν − 1))|
]

≤ α
b+1∑
s=0

G(s + ν − 1, s) |y2(s + ν − 1)− y1(s + ν − 1)|

≤ α‖y2 − y1‖
b+1∑
s=0

G(s + ν − 1, s)

≤ α
(b + 2)Γ(b + ν + 2)

Γ(ν + 1)Γ(b + 2)
‖y2 − y1‖.

So, asα
(b + 2)Γ(b + ν + 2)

Γ(ν + 1)Γ(b + 2)
< 1 by assumption, it follows by the Banach contraction

theorem that (1.1) has a unique solution, as claimed.
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Example 5.7. Suppose thatν :=
11

10
and α :=

1

75
. If f(t, y) in problem (1.1) is

Lipschitz with Lipschitz constantα, then Theorem 5.6 implies that (1.1) will have a
unique solution provided that

(b + 2)Γ
(
b + 31

10

)
Γ
(

21
10

)
Γ(b + 2)

< 75, (5.1)

and (5.1) can be solved numerically to get thatbmax ≈ 5.960, wherebmax is the largest
value ofb such that the hypotheses of Theorem 5.6 is satisfied.

Remark5.8. The bound in Theorem 5.6 can be improved if we use a more complicated
bound in Lemma 5.5, which may be easily facilitated by the use of a computer. The
bound provided by Lemma 5.5 was chosen for computational simplicity.

Remark5.9. Using the bound given by Theorem 5.6 in caseν = 2, yields a unique

solution provided that
(b + 3)(b + 2)2

2
<

1

α
, which is not as good as the classical bound

(cf., [16]). Once again, however, this bound can be improved by using a more compli-
cated estimate than was used in Lemma 5.5.
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