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Abstract

In this paper, we introduce a well-posed discrete right-focal fractional bound-
ary value problem in the case where the ondef the fractional difference satisfies
1 < v < 2. We deduce Green’s function for this problem and prove certain prop-
erties about Green’s function. We show in the case 2 that our results agree
with the previously known results for second-order discrete boundary value prob-
lems but that new results are obtained ik v < 2. In particular, we show that
in great contrast to the case whenr= 2, Green’s function is not monotone in the
case whel < v < 2. Finally, we deduce some conditions under which positive
solutions to the boundary value problem exist as well as some conditions under
which the boundary value problem will have a unigue solution.

AMS Subject Classifications: Primary: 26A33, 39A05, 39A12; Secondary: 33B15,
47H10.

Keywords: Discrete fractional calculus, Gamma function, Green’s function, right-focal
boundary value problem, fixed point theorem in cones.

1 Introduction

In this paper we consider existence results for a certain two-point boundary value prob-
lem of right-focal type for a fractional difference equation. A recent paper by Atici
and Eloe [6] produced a well-posed fractional boundary value problem (FBVP) of the
type we consider in the present work. However, their paper considered only the case
of Dirichlet boundary conditions. Given the interest in right-focal BVPs in the classical

Received October 17, 2009; Accepted April 13, 2010
Communicated by Martin Bohner



196 C. S. Goodrich

literature, the present paper can be considered an important extension of and parallel
to [6].

In the continuous case, the fractional calculus and associated differential equations
have been studied since the late 1600s. However, only in recent years has there been an
explosion of research in this area — see, for example, [2,8,9,17,21] and the references
therein. Moreover, it has been shown that fractional differential equations have nontriv-
ial applications in numerous diverse fields including electrical engineering, chemistry,
mathematical biology, control theory, and the calculus of variations — see, for exam-
ple [2,18-20]. Especially interesting, as mentioned in [20], is that the fractional cal-
culus may provide more mathematically accurate epidemic models — an area of current
and important mathematical research.

However, as is mentioned in [6], there has been little progress made in developing
the theory of fractional difference equations or, moreover, the general theory of the frac-
tional calculus on an arbitrary time scale. In particular, the works cited in the previous
paragraph each explore fractional differential equations. Recently, though, there have
appeared a number of papers on the discrete fractional calculus, which has helped to
build up some of the basic theory of this area. For example, a recent work by Atici and
Sendil [7] shows that fractional difference equations may provide for useful biologi-
cal models. Moreover, each of the papers [5, 11] explore certain properties of fractional
IVPs. In addition to these works, one can consult [3—6,12—-15] and the references therein
to see the additional progress that has been made in the discrete fractional calculus. This
paper, then, can be considered a contribution to this new, emerging area of mathematics.

In this paper, we will be interested in the nonlinear finite discrete FBVP given by

~A"y(t) = f(t+v—1ylt+v—1)) (1.2)
y(v —2) =0=Ay(v+b), |

wheret € [0,b+ 1]n,, v € (1,2], f: [v — 1, v+ b]n,_, x R — R, andb € Ny. Thus,
this paper will offer results that complement and extend the exposition given in [6].

In particular, the outline of this paper is as follows. After stating some preliminary
results, which may be easily found in the existing literature on the discrete fractional
calculus, we first deduce the existence of a unique solution to the FBVP

—A"y(t) =h(t+v—1)
ylvr —2)=0=Ay(v +b),

wherev € (1,2],t € [0,b0+ 1]y,, andh : [v — 1,v + b]n,_, — R, by means of an
appropriate Green’s function. After this, we shall prove that Green’s function for (1.2)
satisfies the sort of useful properties that are available in the casexheh Finally,

we shall use these properties to show that under certain conditions that mirror those
given in the case when = 2, the more general problem (1.1) is guaranteed to have
either at least one positive solution (provided that we additionally assumg(thad is
nonnegative) or a unique solution.

(1.2)
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2 Preliminaries

We first wish to collect some basic lemmas that will be important to us in the sequel.
These and other related results and their proofs can be found, for example, in [3—6].
We begin with some basic properties regarding the discrete fractional derivative. These
results will play a decisive role in our proofs later in this paper.

Definition 2.1. Thevth fractional sum of a functioyi defined oN,, := {a,a + 1,...},
for v > 0, is defined to be

t—v

AF0) = A (t0) = s 3= = D),

S=a

wheret € {a+v,a+v+1,...} = N,,. We also define theth fractional differ-
ence, where >0and0 < N —1<v < Nwith N € N, tobe

AVf(t) == ANA £ (),
wheret € Ny ny_,.
We also recall the definition of theth power falling.

Definition 2.2. We define
Lt+1)
rt+1-v)’
for anyt andv for which the right-hand side is defined. We also appeal to the convention
thatift + 1 — v is a pole of the Gamma function and- 1 is not a pole, the” = 0.

v

Next we require some operational properties of the fractional sum operator.

Lemma 2.3. Lett andv be any numbers for whictf and“~! are defined. Then

AtY = ptv=L,

Lemma 2.4. Assumeu, v > 0 and f : N, — R be a real-valued function. Moreover,
let iz, v > 0. Then we find that

AV [ATH()] = AT f() = AT [ATf(1)]
wheret € N4, 4q.

Lemma25.Let0< N —-1<v < N.Then

AT AYY(t) = y(t) + Ot 4+ Cot2 4 - -« + Cyt=X,
for someC; € R, with1 <7 < N.

We shall find Lemma 2.5 of special use in the next section of this paper.
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3 Derivation of Green’s Function

In order to help us analyze the nonlinear problem (1.1), we now wish to derive a Green'’s
function for (1.2). Of particular note, we shall observe at the end of this section that in
casev = 2, Green'’s function we obtain in Theorem 3.1 below matches Green'’s function
obtained in the case when= 2. Before stating this useful theorem, let us introduce
the following notation, which will be important in the sequel:

Ty:={(t,s)ev—1Lv+b+1]n_, x[0,b+1]y : 0<s<t—v+1<b+2},
Ty={(ts)elv—1v+b+1]n_, x[0,b+1]y, : 0<t—v+1<s<b+2}.
We now state a result that is important in the sequel.

Theorem 3.1. The unique solution of the FBMR.2)is given by

b+1
y(t) =Y G(t,s)h(s+v —1),
s=0
whereG(t, s) is Green’s function for the problem

wherel < v < 2, which is given by

L(b+ 3)t2=1 L .
G(t,s) := 1 F(V‘f‘—b‘f'y_ll)@—i_b_s_l)_(t_s_l)’ (t,s) € Th
Y %(” Th-s— 1) (t,5) € T,

Proof. Observe that by inverting the fractional difference operator coupled with an ap-
plication of Lemma 2.5, we find that a general solution of the fractional difference
equationin (1.2) is

y(t) = —AVh(t + v — 1) + C1t2=L + Cot™=2,

whence, by Definition 2.1, we get that

y(t) = — (t—s— 1" h(s + v — 1) + C1t=L 4 Cot=2,

We now would like to determine the values@f andC’, so that the boundary conditions
in (*) hold. To this end, applying the boundary conditigfy — 2) = 0, we find that

0=—-A"h(t+v—1)|_ ,+Ci(v—2)""+Cy(v —2)*2 (3.1)

t=
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Now, it is easy to show by Definition 2.2 that — 2)“~% = 0. Similarly, Definition 2.2
implies at once thaty — 2)“~2 = I'(v — 1). Finally,
-2
—v 1 v—1
—A7"h(t+v— 1)‘t:1,_2 = —m;(t—s— D*=h(s+v—-1)=0
by the standard convention on sums. So, in summary, we find that (3.1) implies that
Cy = 0.
Similarly, we can apply the right boundary condition — namély,(v + b) = 0.
Doing so, we find that

0=Ay(v+b) ={A[-A7"h(t+v —1)] }t:qub + A [Crt] — (3.2)
Note that (vt b 1)
+b+
A [pr=L —(v—1 ool .
(=], = (v =1) O (3.3)
and, as it is known thahA™ = A", that
{A [A_Vh(t + v—= 1)] }t v+b [Al Vh(t + v—= 1)]t:1/+b
1 t—v+1
_ e 1)=2 _
ol oy > (t—s—1)2h(s+v—1)
s=0 t=v+b
1 b+1
- - e v—2 _
= Fo ) ;(1/+b s — 1) =2h(s+v—1).
(3.4)
Putting (3.2), (3.3), and (3.4) together, it is a simple matter to show that
_BATRE Ay =Dl  T(O+3) -
C, = (V—lI)‘{‘b(:g—)b-i-l) T +b+1) ;(l/jtb—s—l) h(s—v+1).

(3.5)
But with (3.5) in hand, we can determipé) exactly. In particular, we find that

y(t) = —A""h(t+v—1)+ Ct"L

= F(1V> ti(t —s5—1)"h(s+v—1)
<F>(3<+i)tb P Z< to—s—1=he—v+D)
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from which it is immediately clear that we may write

b+1

y(t) = G(t,s)h(s +v—1),

s=0
where
r'(b =1
i(wb—s— D=2 — (t—s— 1)L, (t,s) €Ty
Glt,s) = 1 Fgu+b)+ 12
’ ’ F(]/) I'(b+ 3)t= 9
LS —s—1 T
F(y—|—b—|—1)(y+b S ) y (t,S)G 2
is Green’s function for (*). This completes the proof. O

Remark3.2 Observe that(v — 2, s) = 0, for eachs € [0, + 1], .

Remark3.3. Let us note for the reader that in case we put 2 in Theorem 3.1, it
follows that we get the “usual” Green function, just as we might hope would happen.
Indeed, in case = 2 we find that (in case = 0)

1, 0<s<t—1<b+2
G(t,s) = i =9 =0
t, 0<t—1<s<b+2,

with G(t, s) defined on1, b + 3|y, x [0,b + 1]y,, Which accords with the usual results.

Remark3.4. As is implied by the definition of the sef§ andT, as well the form of
G(t, s) as given in Theorem 3.1, we have that Green’s functié(, s), is defined on the
setly—2,v+b+1]y,_, x[0,b+1]y,. Incidentally, it is easy to show thék(¢,b+2) = 0,
for each admissible So,G could be extended ty — 2, v + b + 1]y,_, X [0,b + 2]y,
without difficulty, but we do not require this in the sequel.

4  Properties of Green’s Function

In this section of the paper, we wish to prove that our Green’s funciigns) satisfies,

with appropriate and simple modifications, the usual classical properties. Certain of
these properties will be crucial when we prove our existence theorems in the final section
of this paper. We begin by stating a lemma.

Lemma 4.1 (See [6]).Let v be any positive real number and letand b be two real
numbers satisfying < a < b. Then the following hold.

R , :
(i) — is adecreasing function far € (v, +o0)x.
ry

(a —z)*

(b—x)x

(ii)

is a decreasing function for € [0, — v)y,.
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We now state and prove the first of a trio of propositions regardiftgs).

Proposition 4.2. The functionG(¢, s) defined in Theorem 3.1 satisfie§t, s) > 0 for
alt e v—1Lv+b+ 1]y, , ands € [0,b + 1]y, Wwhere[v — 1,v + b+ 1]y, , :=
{v—1,v,...,v+b+1}.

Proof. To prove this proposition, we shall show directly ti@tt,s) > 0 for each

(t,s) € [v—1,v+b+1]n, , x[0,b+ 1]y,. For simplicity, we shall look af (v)G(t, s),

for I'(v) > 0 so that ifl’(v)G(t, s) > 0, then at once it follows thaF(t, s) > 0, too.
First notice that for¢, s) € T,, we have that

L(b+ 3)te=L

F'v+b+1)
FG+3)r't+HNv+b—ys)
Fv+b+1DI(t—v+2)I'(b—s+2)
> 0,

F(V)G(t, S) = ( + b —s— 1)&

clearly.
On the other hand, far, s) € T3, we find that

L+ 3)t=t(v+b—s—1)=2
Fv+b+1)

B Fo+3)rt+HI(v+b—ys) L(t—s)

T T4 b+ )Tt +2—-)T(b—s5+2) Dt—s—v—+1)

['(v)G(t,s) = —(t—s—1)—

We claim that

Fro+3)rt+1r'y+o—ys) I'(t—s)

- 0.
Tt bt DIt +2 - (b—5+2) Tl—s—vtl)

To see that this is true, note that it suffices to show that

T(b+3)(t+ (v +b—s)T(t—s—v+1)

Fv+b+DIt+2—0v)I'(b—s+2)I'(t — s) > 1

whenevert, s) € T;. To prove this latter claim, we shall show that for each admissible
s andt, we have both that
Fo+3)I(v+b—-s)
Fv+b+1I'(b—s+2)

>1 (4.1)

and that
Frt+D)lN(t—s—v+1)

Fit+2—-v)'(t—s)
from which the desired claim will follow at once, clearly.

> 1, (4.2)
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To see that (4.1) holds, let be an arbitrary but fixed element [of b + 1]y,. Then
we find that

Lh+3)I'(v+b—s)  TO+3)(v+b—sp)
C(v+b+1)I(b—s+2) Tw+b+1DT(b—so+2)
(b+2)IT (v +b—so)
T(v+b+1)(b—so+1)
(0 +2)(b+1)---(b— 50+ 2)
b+ )bt —1)--(b+v—s)

(4.3)

) b+2 b+1 — 2
But notice thato— > ot > bS—O+
b+ v b+v—1

above, with equality occurring if and onlyif = 2. Thus, we conclude that

> 1 in expression (4.3)

LFb+3)I(v+b—ys)
Fwv+b+1)I(b—s+2) ~

which establishes (4.1).

On the other hand, to see that (4.2) holdssigtonce again, be arbitrary but fixed
such thatsy € [0,b+ 1]y,. Then we have that farto be admissible;, = sy + k& + v, for
somel < k < b— sy + 1 with & € Ny. But then it follows that

re+1)I't—s—v+1)

Ft+2—-v)I'(t—s)

_T(so+k+v+1) T(k+1)

T T(so+k+2) T(k+v)
v+so+k)(v+so+k—1)---(v+k)I(k+v) k!

B (so+ k+1)! "T(k+v) (4.4)
(v+so+k)--(v+k)- k!
B (so+k+1)

_(sot+k+v)(so+k—1+v) - (k+v)
B (so+k+1)(so+k)---(k+1)

Notice, however, that each of the numerator and denominator in (4.4asl) terms.
sg+ +k+v so+k—1+v
Moreover, if we consider the terms in pairs, as :..
k? —I— ]_ S0 + k?

k
kiﬂ then we notice that each pair is greater than unity. Indeed, asr < 2, it

k . .
follows at once, for example, the;f% > 1. As this argument may be applied to
0
each of the(sy + 1) terms in (4.3), it follows that

Fre+1)I't—s—v+1)
Ttt2— o5
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which establishes (4.2).
Finally, combining (4.1) and (4.2), we see at once that

Fo+3)rt+1)Ir'v+bo—s)I't—s—v+1) o1
F'v+b+1DI't+2—v)I'(0—s+2)I'(t—s) ’

whenever(t,s) € T, whenceG(t,s) > 0 whenever(t,s) € T;. Together with the
first part of the proof, we find tha®(¢,s) > Oforallt € [v — 1,v + b+ 1]y,_, and
s € [0,b+ 1]y,, as claimed. O

Before proving Proposition 4.4 below, we need an easy but important preliminary
lemma.

Lemma 4.3. Fix k € Nand let{m;}_,, {n;}"_, C (0,+00) such that

max m; < min n;
1<5<k 1<5<k

and that for at least ong,, 1 < j, < k, we have thatn;, < n;,. Then for fixed
ap € (0,1), it follows that

moo mit Qo ME o)y
n+oy  ng+ao my mg '

Proof. Fix an indexj,, wherej, is one of the indices, of which there exists at least
one, for whichn;, > m,,. Notice that as»;, > m,, anday > 0, it follows that
Ny Qlg > Mjo Q, WhenC@”njonjO + nj, Qo > M nj, + Mj g, SO that

mj, + op < Mo + op

9

M, Mo
whence
n; ms, + Q
Jo . Jo 0 > 1
njo + Qp mjo

But now the claim follows at once by repeating the above steps for each of the remaining
jo — 1 terms and observing that the productjaierms, each of which is at least unity
and at least one of which exceeds unity, is greater than unity. O

Proposition 4.4. For G(t, s) defined in Theorem 3.1, it follows that

max G(t,s) =G(s+v—1,s),
tev—1Lv+b+1ly,

wheneves € 0,0+ 1]y,.
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Proof. Before beginning this proof, let us make one preliminary observation. Indeed,
note thafA,G(t,s)],_,,, = G(v +b+1,5) — G(v + b, s) = 0, for each admissible,
which is easy to verify by direct computation. Of course, this must be true by virtue of
the fact thatz must satisfy the right-hand boundary condition in each of FBVPs (1.1)
and (1.2). Practically, this means that

max G(t,s) = max G(t,s),
telv—1v+b+1]n,_, telv—1,v+bln,_,

for each admissible. Consequently, this means that in the sequel, we can effectively
ignore what happens at= v + b + 1 on account of the above noted relationship, and
we do just that.

Now, let us consider the differend&v)A;G(t, s) for (t,s) € Ti. In this case, we
find that

C(v)AG(L, s)

_ T'(b+3)= =2 v—1
= A m(u—l—b—s—l)——(t—s—l)—
Db+ 3) (v — 1)t=2 a2 2
T Twibrl) (v+b—s—1) (v—1)(¢t 1)
P43 (v -2 +b—s— 12— (v =D+ b+ 1)(t —s —1)*=2
B D(v+b+1)
v—1

:m[F(b+3)td(u+b—s—1)u—2_r(y+b+1)(t_s_1)@]_

Note that it is clear from the above expression that in case2, we findA;G (¢, s) = 0,
as expected. Consequently, let us assume in the sequel thatr < 2. Observe

v—1 :
thatm > 0, clearly. So, it follows that'(v)A;G(t,s) < 0 (and thus that

AG(t,s) < 0, seeing a$'(v) > 0) provided that
Ph+3)t2(v+b—s—1)2<T(w+b+1)(t —s—1)~2
and this is true if and only if

Fv+b+ DIt —s)(b—s+2)

T3 +b— s —s vt 2w - (4.5)

To show that (4.5) holds, let us, as in the proof of Proposition 4.2, supposs, tisca
fixed but arbitrary element @6, b+ 1]y,. Then it follows, as before, that= so+ k + v,
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wherek € N such that) < k£ < b — sq. But we then find that
Fv+b+ DIt —s)'(b—s+2)
FO+3)T(v+b—s)(t—s—rv+2)tr=2
CTw+b+ 1) (so+k+v—s50)T(b—50+2)T (so+k+v—v+3)
ST +3T (v+b—sg)D(so+k+v—sy—v+2)(sg+k+v+1)
C Tw+b+1)I(k+v)L(b—s0+2)T (so+ &k +3)
S TO+3) (v+b—s)T(k+2) (s +k+v41)
CTw+b+D)I(k+v)(b—so+ 1) (so + Kk +2)!
)T (b —so) (K+ DT (so+k+v+1)
Cw+b)(wH+b—1)--(v+b—s50)] (b—s0+ 1) (s0+ Kk +2)!
O+ kD (so+k+v)(so+k+v—1)---(k+v)
(b Fb—1)--- (v 4 b—sp) (so+hk+2)(so+k+1)---(k+2)
T 0+2)(b+1) - (b—s0+2)  (so+k+v)(so+k+v—1)--(k+v)
(4.6)
Observe that each of the numerators and denominators of each of the two fractions in
(4.6) has exactly, + 1 factors. Moreover, observe that in the case of the first fraction,

b b—1
we can consider this fraction as the productpof 1 factors as in yrovt .
) b+2 b+1
ZJF—:LS;. Now, puta, := 2—r and note that, € (0, 1). Also putn; := v+b+(1—7)

for1 < j < sg+ 1. Then we find that

b +b—1)---(w+b—s) T& n
b+2)(b+1)---(b—s9+2)

)
=1 n; + o

where the finite sequende; }SOJr1 (0, 00) and the numbey, satisfy the hypotheses
of Lemma 4.3. Ina completely similar way, if we put; :== k + v + (j — 1), then we
find that

(so+k+2)(so+k+1)--(k+2) Sﬁlijrao
(so+tk+v)(so+tk+v—1)---(k+v)

which again is of the form in Lemma 4.3, féfn; }SO+1 (0,00). Consequently, with
m;, n;, andog defined as above, we note that
Fv+b+ DIt —s)I'(b—s+2)
Fb+3)(v+b—s)(t—s—v+2) =2
(wFLwHb—=1)-- (v +b—s) (so+k+2)(so+k+1)---(k+2)
0 +2)(b+1) - (b—s0+2)  (sotk+v)(so+k+v—1)--(k+v)

so+1 so+1
_ H nj H mj + (7))
=1 nj + (7)) . mj

J=1

4.7)
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Now, in order to apply Lemma 4.3 to (4.7) above, we must consider three cases. First, it
is possible, depending upon the choice@fk, andb, that there are no repeated factors
between the two products in (4.7). In this case, we seenthatn; < minn;, and so,

J

J
by the argument in the preceding paragraph, we may immediately apply Lemma 4.3 to
deduce the bound givenin (4.5).

Secondly, it is possible that some factors are repeated between the two products in
(4.7). In particular, there may hesuch repeated factors, with< p < s, in each
of the numerators and denominators of each of the products in (4.7) that cancel. This
cancellation will leaves, + 1 — p factors — in particular, in this case it is easy to show
that

T(v+b+1DI(E—s)I'(b—s+2)
Fb+3)(v+b—s)(t—s—v+2)t=2

so+1 . so+1 M + ao
_ J J
(H le +Oéo> (H mj ) (48)

Jj=1 Jj=1

so+1—p so+1-p
_ H TLj H mj + (%)) .
’I’Lj =+ (%)) . mj

j=1 j=1

But then Lemma 4.3 may be applied to (4.8) above to yield the bound in (4.5) in this
case, too.

Finally, if £ = b — sq, then it equally easy to show that product (4.6) is exactly unity
—that is,

Tv+b+ )I(t—s)Tb—s+2) Sﬁl n; Sﬁl mitao)
Fb+3)(v+b—s)(t—s—v+2) =2 LL oy + g , m; '

J=1 J=1

However, this corresponds to the casgG (¢, so0)],_,,, and we observed at the begin-
ning of this proof that, [G (¢, s0)],_,,, = 0, as it must from the boundary conditions.

So, in summary, in each of the three cases we can safely apply Lemma 4.3 to (4.6)
to get that

Fv+b+ DIt —9s)(b—s+2)

1
Th+3T(w+b—s)T(—s—vi2)e2

so that (4.5) holds. By the earlier observation, then, it follows at once\}@tt, s) < 0
whenevel) < s <t—v+1<b+ 1, as desired.

We next argue thah;G(¢,s) > 0for0 <t—v+1 < s < b+ 1. To see that this is
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true, we simply notice thatfar <¢ —v+1<s<b-+1,

T(b+ 3)1=L
AtG(t75) :At %(V+b—s—l)’j_2

_ D(b+3)(v — 1= .

= = To+be D) (v4+b—s—1)=2 (4.9)

CTO+3)(v—-1DIEt+1)I(v+b—s)
S Tw+b+ 1)t —v+3)(b—s+2)

Now, observe that each factor in (4.9) is strictly positive. Therefore, we conclude that
AG(t,s) >0incased <t—v+1<s<b+ 1, whenceG(t, s) is increasing on that
interval, too.

In summary, then, we have th@it, s) is increasing for —v +1 < s < b+ 1 and
decreasing fob < s < t — v + 1. And from this we may conclude that

max G(t,s) =G(s+v—1,s),

tev—1Lv+b+1ly,_,
whenevers € [0,b + 1]y,, as desired. N

Remark4.5. Interestingly, we notice that in case< (1,2), Proposition 4.4 demon-
strates thaz (¢, s) is not constant fot > s + v — 1. This contrasts with the classical
casey = 2, in which Green'’s function attains its maximumsat s and then is constant
for ¢ > s. Furthermore, as — 2 from the left, our Green’s function does tend to the
known Green function in case= 2.

Before proving our final proposition, let us introduce the constangsd~,, which
will be important not only in the following proposition but also in the final section of
this paper:

o P N R CC R ) s R A Y
B )( ) " T(b+3) (v+b—1)=L

<3(b+u) 4 '
4
bzy’ 3<b: V)} NN, ; # 0. For G(t, s) defined in

Theorem 3.1, it follows that there exists a numbet (0, 1), where

Proposition 4.6. Assume tha

Y= min {717’}/2} )
with v, and~, as above, such that

min  G(t,s) > - max G(t,s) =vG(s+v —1,s),

te[%v%] telv—1,v+b+1]n,_,

for s € [0, b+ 1]N0-
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Proof. Let us begin by noting that
G(t,s)
G(s+v—1,s)
=L (t—s—1=0 (v +b+1) (ts)eT
) s+v—1)L To+3)(s+v—1)"Lv+b—s—1)r=2" 7 !
- tv=1
(s +v—1)=L (t,5) € To,
. : : . b
which is obtained by direct calculation. Now, fer> ¢t — v +1and—— < t <
3(b+v)

, we have that

G(t,s) =L

(ry=t (e
G(S+V—1,S) B (S—{—I/—l)ﬂ 2 ((b—{—l)—l—y—l)ﬁ_ (b—{—y)ﬂ’ (4.10)

becauseé“ is increasing irt for a € (0, 1).

On the other hand, the proof of Proposition 4.4 shows that s) is decreasing in
b b .
cases < t — v + 1. Consequently, fos < ¢t — v + 1 andt € [ +v 3 +V>1 t

follows that

4 4
: G(t,s)
min
re[tre, 3040 G(s+v—1,s)
=t B (t—s—1)“=T(v+b+1)
(s+v—1)=L TOB+3)(s+v—-1)=Lr+b—s—1)=2 = 3e)
v—1 v—1
(—S(bf’))i (—3(b1r”) —s— 1)71“(1/ +b+1)
C(sH+v—1L TOh+3)(s+v -1y +b—s—1)z=2
Now, put
v=1
. 1 so+m)t (2 -s—1) Tr+b+1)
o) = e 1 T T+ b—s— D)2
Notice that

_ +b—s—1)L
b_ _1\1/ 2_(V
v+ s / b—s+1 ’

which is a simple consequence of Definition 2.2. Furthermore, observe that by Lemma
4.1, part (ii) we find that

v—1

(3(b4+z/) e 1)—

(v+b—s—1)=L
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: . 3(b .
is decreasing fof < s < (b+v) — v + 1. Consequently, these two observations

together with an application of Lemma 4.1, part (i) imply that

v—1

b+v —
v—1 <—3(I)—3—1> F'v+b+1)
Fb+3)(v+b—s—1)==2

)
- 1 (3(b+1/))”1_ (W—S—QHF(VHHU
)

(s +v—1)r= 4 PO (b s — 1)L
: v—1 )
3(b+v —
1 3b+1)\*— b+l (%—1) I(v+b+1)
(s+v—1)= 4 I'(b+ 3) (v+b—1)=L
) v—1
_ 3(b+v) —
- (3<b+u>>”‘1 1 T'(b+3) (v+b— 1)L !
1

where to get the first inequality we set= 0 in the expression in the square brackets.

As a result of this analysis, we conclude that in case: t — v + 1 andt €
{b +v 3(b+ 1/)}

4 4
G(t, s)
G(s+v—1,s)
3(b+v v=1
1 3+ 1)\ b+l (%—1) Py +b+1)
4 I'(b+ 3) (v+b—1)=L

(4.11)

Finally, then, upon combining (4.10) and (4.11), we deduce that

min ~ G(t,s) > max G(t,s) =vG(s+v—1,s),

=7
&Tygtg 3@2’”) tG[V—l,V+b+1]NU_1

where we put
= min {71772} )
which completes the proof. O]
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Remarlk4.7. Note that it is the case that< + < 1 in Proposition 4.6. Indeed, itis clear

bv\r—L
that0 < % < 1. On the other hand, to see that
(b+v)r=
v—1
3(b+v) —
0 < 1 3b+v)\*  b+1 (T—1> F(v+b+1) .
<3<b+u>>”1 4 T'(b+3) (v+b—1)=t )
4
we may observe that
b1 . () T+ b+ )T b+ 1)
I'(b+3) 3b+1/) (3(1;1”) —1/+1> (v +b)

1 F(3(b4+)>r(u+b+1)r<%—u+2>
—b+2.F(W+1>F(y+b)F< M)y 4 1)
(b+v) (W—uH)
(v +2) (22)

<1,

which suffices to prove the claim.
Remark4.8. In case we putr = 2 in Proposition 4.6, we find by direct calculation that

(1 4
= 1min —_— T 7.
" 13b+6

Remark4.9. It should be noted that while the right-focal problem is simpler than the
Dirichlet problem in the case when= 2, it is more difficult in the fractional case (i.e.,

in casel < v < 2) as a comparison of the above proofs to the corresponding proofs
in [6] shows.

5 Existence and Uniqueness Theorems

In this final section of the paper, we wish to deduce certain representative existence and
uniqueness theorems. We begin with a preliminary and well known lemma, which can
be found, for example, in [1] and is due to Krasnosel'ski

Lemma 5.1. Let B be a Banach space and l&t C B be a cone. Assume th@ and
Q, are open sets contained B such thatd € ©; and; C Q,. Assume, further, that
T : KN (92 \ Ql) — K is a completely continuous operator. Then if either

) [Ty < |ly|| fory € KN oQy and||Ty|| > ||y|| for y € K N OS2, or
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(i) [Tyl > |lyll fory € KN oL and|[Ty| < [ly[| fory € KN Oy,
thenT has at least one fixed point i N (25 \ Q).

We now consider the nonlinear equation (1.1). We noticegtsalves (1.1) if and
only if y is a fixed point of the operator

b+1
Ty := ZG(t,s)f(s—l— v—LlLy(s+v—1)),
s=0

whereG is Green’s function derived in this paper aind : B — B, whereB is the
Banach spac8 = {y : v —2,v+b+1)y,_, =R : y(v—2) = Ay(v +b) =0}
equipped with the usual supremum notm,||.

Let us also make the following declarations, which will be used in the sequel:

1
le’g G(s+v— 1,3)’

1=

B 1

= \_3<V+b) _V+1J .
Zs:[”‘%%biwﬂ G ZH'Tl +v,s

Let us also introduce two conditions on the behavioy ahat will be useful in the
sequel.

(C1) There exists a number> 0 such thatf(¢,y) < nr wheneve <y <r.
(C2) There exists a number> 0 such thatf(¢,y) > Ar whenevernr <y <r.

Remark5.2 The technique that we use to deduce the existence of at least one positive
solution is very similar to the techniques found in the classical literature on differential
equations — see, for example, [10].

We now can prove the following existence result.
Theorem 5.3. Suppose that there are distingt, ro > 0 such that conditiofC1) holds
at r = r; and condition(C2) holds atr = r,. Suppose also thaf(¢,y) > 0 and

continuous. Then the FBVR.1) has at least one positive solution, say such that
llyol| lies betweem; andrs.

Proof. We shall assume without loss of generality thatc »; < r,. Consider the

setkC = {y eB:yt)>0and min  y(t) > 7||y|]}, which is a cone with

te[bTTU,S(bIV)]
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IC C B. Observe thal” : K — K, for we observe both that

b+1

te[’ﬁlﬁbj”)](T )(t) = b+15113;(1b+u) ZGt s)f(s+v—1y(s+v—1))
b+1
Z’yZG(s—l—V—1,s)f(s+y—1,y(s+u—1))
5=0

b+1

- G(t,s)f(s+v—1, 1
71te[u—1,15143;}4{r1]NV_1 Z (t,s)f(s+v y(s+v—1))

=Tyl

and that(7y)(t) > 0 whenevery € K, whencel'y € K, as claimed. Also, it is easy to
see thafl" is a completely continuous operator.

Now, putQ); := {y € K : |ly|]| < r1}. Note that fory € 02,, we have thaljy|| = r,
so that condition (C1) holds for all € 02,. So, fory € K N 92, we find that

b+1

Ty|| = G(t, ~Ly(s+v—1
1Tyl te[u—l,rzflfl;}il]m_l; (t.s)f(s+v—1y(s+v—1))

b+l
< ZG(S—I—I/—1,S)f(S+V—1,y(S+V—1))
s=0
b+l

<nr Y G(s+v—1s)

s=0
= 7"1

= llyll,

whence we find tha{T'y|| < ||y|| whenever € KN 0$;. Thus we get that the operator
T is a cone compression doinN 012;.

On the other hand, pu?, := {y € £ : |ly|| < r2}. Note that fory € 9Q,, we
have that||y|| = r, so that condition (C2) holds for al} € 0Q,. Also note that
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HbJFlJ +,,} c [b+y73(b+y)]. So, fory € K N 99, we find that

2 4 4
Ty(F%iJ+V):§;G<V%;ﬁ+Vﬁ)ﬂ8+u—Ly@+u—1»

v

> GQHTlJ +u,5) fls+v—1ys+v—1))

s=[YF0—p+1]

[ECaSY,

SR

s:(”Ter—V—i-l]

=T,

whence||Ty|| > ||y||, whenever € N 0SQ2,. Thus we get that the operatfiis a cone
expansion oriC N 0€2,. So, it follows by Lemma 5.1 that the operatbrhas a fixed
point. But this means that (1.1) has a positive solutiongawith r; < ||yo|| < ro, as
claimed. O

Remark5.4. Of course, it is possible to extend Theorem 5.3. In particular, one can
provide conditions under which multiple positive solutions will exist. As the author has
already presented such results in the Dirichlet case (cf., [12]), they will not be repeated
with the dual results here.

If we assume thaf satisfies a Lipschitz condition, then we can get uniqueness in
addition to existence. This is the content of Theorem 5.6 below. We require first a
preliminary lemma.

Lemma 5.5. For G(t, s) as defined in Theorem 3.1, we find that

b+1

max ZG(t,s) <
5=0

tev—1v+b+lly,_; “—

(b+2)I'(b+v+2)
Fv+1DI(b+2)

Proof. By invoking Theorem 3.1 together with Proposition 4.4 we find that

Fb+3)(s+v—1) =T (v+b—s)
Fw)I'(v+b+1)I'(b—s+2)
(b+2)T(b+2—s)(s+v—1)rL
- C(v)(b+1)IT(b—s+2)

(b+2)

— ) (s +v— 1),

G(s+v—1,s) =




214 C. S. Goodrich

from which it follows that

b+1 b+1

b+ 2 .
< 1)L
@H%QMQJMQ_;HW@W )
b+ 2 {1 b+2
= —(s+v— 1)@
L(v) |v Y
b+2 1
frg R b 1 12
P(V) V( + v+ )
b+ 2T(b+v+2)
T(v+1)I(b+2)
as claimed. -

Now we prove a uniqueness theorem by using the Banach contraction theorem,
which can be found, for example, in [22].

Theorem 5.6. Suppose thaf (¢,y) satisfies a Lipschitz condition in with Lipschitz
constanta — that is, | f (¢t,y2) — f (t,11)] < alys — y1| for all (t,v1), (t,y2). Then it
follows that if
b+2)Lb+v+2) 1
T+ I +2) a
then(1.1) has a unique solution.

Proof. Letyy, y» € B, whereB3 is the Banach space described earlier. Then we find that

| Ty2 — Ty ||
bl

< a [Gt,
_te[ul,IEler}il}Nu_l; | ( S>|
AF sy = Lya(s+v=1) = f(s+v = Ly(s +v—1)]
b+1
<a) Gls+v—1,9)|pa(s+v—1)—pls+v—1)
s=0
b+1

<ally —wll Y Gls+v—1,5)
s=0

&(b+2)r(b+u+2)u il

=T+ 1r+2) W2 U

(b+2)'(b+v+2)
So, asy
Fv+1)I'(b+2)
theorem that (1.1) has a unique solution, as claimed. O

< 1 by assumption, it follows by the Banach contraction
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Example 5.7. Suppose that := % anda := % If f(t,y) in problem (1.1) is

Lipschitz with Lipschitz constant;, then Theorem 5.6 implies that (1.1) will have a
unique solution provided that

(b+2)r (b+ 3
I'(3)rb+2)

< 75, (5.1)

and (5.1) can be solved numerically to get that, ~ 5.960, wherebma is the largest
value ofb such that the hypotheses of Theorem 5.6 is satisfied.

Remarks.8. The bound in Theorem 5.6 can be improved if we use a more complicated
bound in Lemma 5.5, which may be easily facilitated by the use of a computer. The
bound provided by Lemma 5.5 was chosen for computational simplicity.

Remark5.9. Using the bound given by Theorem 5.6 in case- 2, yields a unique

. . b b+ 2)? 1 L .
solution provided thag +3)(b+2) < —, whichis not as good as the classical bound

(cf., [16]). Once again, however, this b%und can be improved by using a more compli-
cated estimate than was used in Lemma 5.5.
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