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Abstract

In this paper we study the boundedness, the persistence of the positive solu-
tions, the existence of a unique positive equilibrium, the convergence of the posi-
tive solutions to the positive equilibrium and the stability of two systems of rational
difference equations which are modifications of the Beverton—Holt equation.
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1 Introduction

Difference equations have many applications in several applied sciences, such as biol-
ogy, ecology, economics, population dynamics, genetics, etc. (see [4,8,11-13,15,21,28]
and the references cited therein). For this reason, there exist an increasing interest in
studying difference equations and systems of difference equations (see [1-11, 13-21,
23-25,27-30] and the references cited therein).

In [13] the authors studied some discrete competition models. It is known that if
b > 1, then all solutions of the Beverton—Holt equation

bx,,

— L n=0,1,...,
1+ cnzy,

Tp4+1 =

: —_ b—1 o
wherez, > 0 tend monotonically to the equilibrium = ——. This difference
1
equation is the discrete analog of the logistic differential equation studied in [12]. The
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Leslie/Gower (difference equation) competition model (see [21])

bll’n
Tn = )
Ty C11Tn + C12Yn
ben
Yn+1 =

1+ co1y + C22Yn,

is a modification of the Beverton—Holt equation which has played a key role in theoret-

ical ecology.
In [29] the authors studied the global stability of the rational difference equation

bx
Tpy1 = = ,n:O,l,...,
T L S boxy, + byt + o A+ bk

whereb, b;,7 = 0,1, ..., k are positive constants and the initial valugs: = —k, —k +
1,...,0 are positive numbers.

In this paper we consider two systems of rational difference equations which are
modifications of the Beverton—Holt equation, of the form

Tpy1 = P m )
1+ Z bz’xnfi + Z CilYn—i
Yn+1 = q s 7n:0717"'7
1+ Z €iYn—i + Z k'zxnfz
1=0 =0
AYn
xn—&—l — m D )
1+ Z CiYfn—2i + Z bip—2i—1
=0 dwn i=0 (1.2)
Ynt+1 = S q anzovla"'7

1+ Z kit —oi + Z €iln—2i—1
— —

wherea, d, b;, 1 = 0,1,...,p, ¢, 1 =0,1,....m,e;, 1 =0,1,...,¢, k;, =0,1,...,5s

are nonnegative constants, the initial values of (1) = —7,—7 + 1,...,0, u;,
i=—-71,—7+1,...,0,7 = max{p, s}, T = max{m, q} are positive real numbers and
the initial values of Q2yx;,i=-X\-X+1,...,0,y;,i = —p,—pu+1,...,0, A =

max{2p+1,2s}, p = max{2q¢+1, 2m} are also positive real numbers. More precisely,

we study the boundedness, the persistence of the positive solutions of (1.1) and (1.2),
the existence of the unique positive equilibrium of (1.1) and (1.2), the convergence of
the positive solutions of (1.1) to the unique positive equilibrium of (1.1). In addition,
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we study the convergence of the positive solutions of the system

aYn
Tnt1 = D
1+ coyn + Z bixy—2i—1
i=0
dz,, (1.3)
Yn+1l = 7 , n=0,1,...,
1+ kox,, + Z €ilYn—2i—1
i=0

where the constantg, kg, b;, i = 0,1,...,p, ¢;, 1 = 0,1,...,q are nonnegative real
numbers and the initial values are also positive real numbers to the unique positive
equilibrium of (1.3). Finally, we study the global asymptotic stability of

ax,,
Tn - ’
- 1 + bxn + cyn—l
dy (1.4)
n - - ) = 07 17 BRI
Yn+1 1+ey, + krn,q "
aYn
Tn - s
L CYn + b, 1
\ (1.5)
Yn+1 = n n:O,l,...,

1+ kz, + eyn_t’
wherea, b, ¢, d, e, k are positive constants and the initial values are also positive real
numbers.

2 Study of System(1.1)

In this section we study system (1.1). First we find conditions so that system (1.1) has a
unique positive equilibrium.

Proposition 2.1. Consider systertl.1), where

a>1, d>1. (2.1)
Suppose that either
(a—1)E>(d—1)C, (d—1)B> (a—1K (2.2)
or
(a—1)E<(d-1)C, (d-—1)B<(a—1)K (2.3)
hold, where , - , .
B=) b, C=> ¢, E=) e, K=Y k. (2.4)
=0 1=0 =0 =0

Then systerfil.1) has a unique positive equilibriufz, 7).
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Proof. In order(z, 3) to be a positive equilibrium for (1.1), we must have

azr dy

"Ti1yBi+oy YT 1+ Byt Kz

or equivalently
Bx+Cy=a-1, Ki+Ey=d—1.

So using (2.1) and since either (2.2) or (2.3) hold, we get

(a—1)E—(d-1)C
BE — KC

d—1)B—(a— 1)K
> 0, y‘:( B)E—g(c* ) > 0.

i' p—
This completes the proof. O

In the following proposition we study the boundedness and persistence of the posi-
tive solution of (1.1).

Proposition 2.2. Consider syster(l.1), where relationg2.1) and
(a—1)eg > (d—1)C, (d—1)bg > (a—1)K (2.5)
hold. Then every positive solution ¢(f.1)is bounded and persists.

Proof. Let (z,,y,) be an arbitrary solution of (1.1). Since from (2.&),# 0, eq # 0,
then from (1.1), we have

— 9 yn§i7 n:1727"'7 (26)
bo €0
and sz, y,) is a bounded solution. We prove now ttia},, v,,) persists. Suppose that
x, does not persists. Then we may suppose that there exists a subsegyeoice,,
such that
lim z,, =0, z,, =min{z,, 0 <s<n,}. (2.7)

Firstly, suppose that there exists & N such that
d—1
Yo < : (2.8)

€0

Then from (1.1) and (2.8) we obtain

dy,

d ( d—1 ) B
< dy’u < e d 1

Yp+1 = q >~ >~
s 1+ eoys (d 1> €o
1+ E €ilYv—i T+ E kix, L+eo s
i=0 i=0
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and working inductively we have

d—1
Yn < , N2>, (2.9)
€o
Moreover, since from (1.1)
Tn, = _ oot (2.10)
1+ Zbil'nrfifl + Zcz’ynﬁpl
=0 =0
and
AT,
Tp,+1 = D m )
1 + Zbixnrfi + Zciynrfi
=0 1=0
then, using (2.6) and (2.7), it follows that
limz,, _; =0, limz,,+; =0.
Then working inductively we have
limz, =0, 7=.,-1,0,1,.... (2.11)
Furthermore, from (2.5) there exists sufficiently small positigeich that
(a—1)eg — C(d —1) — eBey > 0. (2.12)
Using (2.11) for sufficiently large, we have
Tn,—j <€ j=12,...,p+1, (2.13)

wheree satisfies (2.12). Therefore from (2.9), (2.10), (2.12) and (2.13) for sufficiently
largen,. it follows that

CZSCTLT,1

1+Be+0<d€_01>

> an—l

T, 2

which contradicts to (2.7). Therefore, persists in the case where (2.8) holds.

Suppose now
d—1

€o

Yn > s, n=1,2.... (2.14)
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From (1.1) and (2.14) we have

_ dyn
= - .
I+ Zeiyn—i + Zkixn—i
=0 =0

q s

— = = < 0.

q s
1+ Zeiynﬂ‘ + Zkﬂnﬂ'
i=0 i=0

So, from (2.14) and (2.15), there exists tha y,, and it is different from zero. Let

Yn+1 — Yn — Yn

lim y, =1 # 0. (2.16)
Then from (2.11), (2.16) and since from (1.1),

Ay,

q S
1+ Zeiym-—i + Zkixnr—i
i=0 i=0

Yn,+1 =

we can prove that
| = ——. (2.17)
Moreover, from (2.5) there exists a sufficiently smalt 0 such that
(a—1)E—(d—1)C—€eE(B+C) > (a—1)eg—(d—1)C —€eE(B+C) > 0. (2.18)

From (2.16) and (2.17), there exists a sufficiently lasgsuch that (2.13) and

d—1
ynr—l—i < T + €, Z c {07 1, ce . ,m} (2.19)

hold. Then from (2.10), (2.13), (2.18) and (2.19), we have

Tp,—1
Tn, 2 > Tn,—1

1+B€+C<%+E>

which contradicts again to (2.7). Therefore, persists. Working similarly, we can
prove thaty, persists. This completes the proof. O

In the following proposition we study the convergence of the positive solution of
(1.1) to the unique positive equilibrium of (1.1).
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Proposition 2.3. Consider syster(iL.1), where relationg2.1) and (2.5) are satisfied.
Suppose also that

p q
bo > By, ey > Ey, (bo— Bi)(eo — E) >CK, B = ZbiaEl = Zei' (2.20)
i=1 i=1

Then every positive solution ¢1.1)tends to the unique positive equilibrium (f.1).

Proof. From Proposition 2.2 there exist

L, =limsupz, < oo, [; =liminfz, >0,

Lo =limsupy, < oo, Iy =Iliminfy, > 0. (2.21)

Then from (1.1) we get
Ly < ol , > aly ;
1 -f-b[)Ll +Bll1 —I—Clg 1 —I—boll +BlL1 +CL2

dL2 dl2
L2 < ) 12 > ’
1—|—€0L2+E1l2+Kl1 1+€012+E1L2+KL1

or equivalently

boLi1 + Bily + Cly < a—1<boly + B1Ly + CLy,

eoLy + Erly + Kly <d—1<egly + E1Ly + KLy. (2.22)
Therefore, from (2.22) we get
(bo — B1)(L1 — Iy) < C(La — 1y),
2.23
(eo—El)(LQ—lg) S K(Ll _ll) ( )
Hence, using (2.20) and multiplying both sides of (2.23) we obtain
(bg — Bl>(€0 — El)(Ll — ll)(LQ — 12) S CK(Ll — ll)(LQ — 12) (224)

So relations (2.20) and (2.24) imply th@t; — [;)(Ls — ls) < 0. Therefore, either
Ly =10rLy =105 1f Ly =1 (resp.Ly = l5), then from (2.23)., = I, (resp.L; = [1).
This completes the proof. O

In the last proposition of this section we study the global asymptotic stability of
the positive equilibrium(z, i) of (1.4). We need the following lemma which has been
proved in [22]. For readers’ convenience we state it here without its proof.

Lemma 2.4. Consider the equation

zt 4+ asx® + asx® + a1z + ag = 0, (2.25)
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wherea;, i = 0,1,2,3 are positive constants. Then every solution(2f25) is of
modulus less than if and only if the following conditions are satisfied:

K >0, Ky>0, K3>0, Ky >0, K;KoKg — KK, > K2K5, (2.26)
where
Ki=14+ay+ a1+ as+as, Ky =44 2a3— 2a1 —4ag, K3 =06 — 2as + 6ay,
Ky=4—2a3+ 201 — 4ag, Ks=1—as+ ax —a; + ao.
After some calculations we can see that
KKKy — K2K, — K2K;
= ag + aga1as + ayaz + 2a0az + 1 — ag — az — ay — a; — ajay — agaj.
In addition ifa; = 0, then
KKy K3 — KiK, — K3Ks = (ag — 1)*(1 + ag — az) — apaj. (2.27)
Proposition 2.5. Consider syster(l.4), where(2.1) and the relations
(a—De>(d—1)c, (d=1)b>(a—1)k (2.28)

hold. Then the unique positive equilibriufm, y) of (1.4)is globally asymptotically
stable.

Proof. We prove thafz, y) is locally asymptotically stable. The linearized system about
the positive equilibrium of (1.4) is

a(l+ cy) act
T Mgt ba)2 " (Lteg+ bz

d(1 + kz) dky (2:29)
Il = ey + k22" (Tteg+ ka2 v

System (2.29) is equivalent to system

H O 0 T Tn
B |0 M N O | Yn
wn—l—l - Awn) A - 1 0 0 O 9 Wy = Ty 1 9
0 1 0 O Yn—1
a(l+ cy) T act
(I 4ceg+bz)? T (1+cy+ba)?
d(1+kz dky
__dd+kr) o ]

(1+ kZ + ey)?’ (1+kz +ey)?
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The characteristic equation dfis
M —N(H+ M)+ NHM - NT = 0. (2.30)

Using Lemma 2.4, all the roots of (2.30) are of modulus less than 1 if and only if (2.26)
are satisfied, where

Ki=1—H—M+HM—NT, Ky=4—2(H+ M)+4NT,
K3 =6—2HM —6NT, Ky=4+2(H+ M)+ 4NT,
Ks=1+H+ M+ HM — NT.

Since(z, y) is a positive equilibrium of (1.4), we have

l+cy+br=a, 14+ey+kr=d, (2.31)
and so ( 1) (d—1) b(d —1) — k( 1)
 ela—1)—c(d— ~ —1)—k(a —
v be — ck Y= be — ck ’ (2:32)

In addition, from (2.31) we get

1+ cj —ex |+ ki _ky
He -t p_ T g itE Ny TN (2.33)
a a d d

Using (2.28), (2.31), (2.32), (2.33) and after some calculations, we have

_ %((d ~1)(a— 1) +c(1 — )y + k(1 a)7)
1

_ m(e(a ~1) = eld=1)) (b(d = 1) = k(a = 1)) >0,

_2
" ad

K

K, (d(a 1) +a(d—1) — edy — akz + 20k§:gj>

2
=— (d(cg +b%) + aley + kT) — cdy — akx + 20/{331])

2 _ _ __
= (dbx + aey + 2ck::vy> > 0,

K; = <3ad —1—kz —cy— 4ck§73}>

(3(1 +cy+bz)(1+ey+kz)—1— kT —cy— 4c/-cj:g>

Rl 8w &

(2 + 3b% + 3e§ + 2kT + 2¢5 + 3ce? + 3bkz% + (3be — c/-c):f:»g> >0,
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l4+cy 14k 1+4+kT+cy
+ + >
d ad
Moreover, from (2.27) and (2.31), we have

Ky =1+ 0.

KKKy — K2K, — K2K;

_ (clfiﬂ n 1>2<1 B cl:j?] B (1 +c§i$+ki‘)> N CZ?CZC@ N 1 ti/{;j;>2

1 ckzxy
=—(1
ad( + ad
ckxzy (14+cy 1+ kx\2
+ ad ( a + d )
1 ckxy
=—(1
ad( + ad
11 Tl T\ 2
+ck:l:y(1~|—cy N 1+/€x> -0
ad a d
Then from Lemma 2.4, all the roots of (2.30) are of modulus less than 1 and so the

positive equilibrium(z, y) of (1.4) is locally asymptotically stable. So from Proposition
2.3,(z,y) is globally asymptotically stable. This completes the proof. O

)2 ((1 +cy+bx)(1 + ey + kz) — ckzy — (1 4+ cy)(1 + k::z))

2
) (egj + 0T + cey” + bkz* + (be — ck):f:g>

3 Study of System(1.2)

In the first proposition we study the existence of a positive equilibrium of (1.2).

Proposition 3.1. Consider syster(il.2) such that
ad > 1. (3.2)

Then syster(il.2) has a unique positive equilibrium.
Proof. We consider the system of algebraic equations

ay dx

_ __ 4z 3.2
* 14+ Cy+ Bz’ 4 1+ Kz + By’ (3.2)

where the constantS, B, K, E are defined in (2.4). System (3.2) is equivalent to the
system

f(z) =B(EB— KC)x*+ (2BE + KBa — CK — BC — dC?*)x?

+(aK 4+ aB — C + 2adC + E)x + a(l — da) = 0, (33)

_Bx2+x
y= a—Cz

(3.4)
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Suppose that
EB - KC <. (3.5)
From (3.1) and (3.3), it follows that
f <g> _ B?Ea? n 2BEa? +%
C C?3 C? C
Moreover, from (3.3) and (3.5), we have

>0, f(0)=a(l—da)<0. (3.6)

f(=00) >0, f(oo)<D0. (3.7)

Therefore, from (3.6) and (3.7), it follows that equation (3.3) has one solution in the
interval (—oo, 0), one solution in<0, %) and one solution in the interve(l%,w).

Therefore, equation (3.3) has a unique solution in the inte(r()al%) and so system

(3.2) has a unique positive solution, ) such thatt € (O, %) andy satisfies (3.4).
Now, suppose that

EB—- KC > 0. (3.8)
Then either inequality
E>C (3.9)
or
B>K (3.10)

holds. Firstly, consider that (3.9) is satisfied. Using (3.6), we have that equation (3.3)
has a solution in the intervaﬂ@ %) We prove that (3.3) has a unique solution in

a
(O, 5). We set
§ = EB*— BKC, \=2BE+ KBa— CK — BC — dC?,
p=aK+aB—C+2adC+ E, v=a(l—da).
Let
A>0. (3.11)
Then if p1, po, p3 are the roots of (3.3), from (3.1), (3.8) and (3.11), we get

A v
p1+p2+p3= —7 <0, pipaps = ~2 > 0,

and so equation (3.3) has a unique solution in the inte(r@a%).
Suppose now that
A < 0. (3.12)

Consider equation
fl(z) =302 + 2 v + = 0. (3.13)
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A=)\ —30u<0,
then f'(x) > 0 for everyz € (—oo, 00) and so equation (3.3) has a unique solution in

the interval(O, %) Suppose now that

A > 0. (3.14)

After some calculations and using (3.8) and (3.9), we take

(aB +C) (a(BE — CK) +2aBE + C(E — 0))

f' (%) = 7 > 0. (3.15)

Let ¢1, g2 be the roots of (3.13) such that < ¢,. Then using (3.15) we have either
relation

a
5 <q (316)
or
a
g2 < C (3.17)

holds. If (3.16) is satisfied, theff(z) > 0 for everyz € (O, %) and so (3.3) has a

unique solution in the interva@(), 3).

We prove that (3.17) does not hold. Suppose on the contrary that (3.17) is true. Then
we must have

CA+ 30a > 0. (3.18)
Then from (3.12) and (3.18) we have
P<d<q, (3.19)
p_ BE - CK + B(E —-C)+ KBa
C? ’
Q= (3aB + C)(BE — CK)CJg BC(E-C)+ KBCa‘

After some calculations, we get
A(d) =X —30u=—-3B(BE —CK)(—C + E +aB + 2Cad + aK)

+(C?*d + CK + BC — 2EB — aBK)?. (3.20)
Moreover, using (3.8), (3.9) and (3.20), we have
A(P)
3B(BE — CK) <a(BE — CK)+2aBE + (aB + C)(E — C) + 2KBa2>

C
<0, (3.21)
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3B(aB + O)(BE — CK) (a(BE ~ CK) +2aBE + C(E — C)>
A(Q) = — < 0.

C’2
(3.22)

Therefore from (3.21) and (3.22) it follows that
Ald) <0, P<d<@

which contradicts to (3.14). So (3.17) is not true which means that if relations (3.8)
and (3.9) are satisfied, then equation (3.3) has a unique soluti@] %) Therefore,

system (3.2) has a unique solution y) such thatc € <0, ﬁ) andy satisfies (3.4).
Suppose now that (3.10) holds. System (3.2) is equivalent to the system

E(EB — KCO)y*+ (2BE + CEd — EK — KC — aK?)y*

+(dE + dC — K + 2adK + B)y + d(1 — da) = 0, (3.23)
Ey* +y

= : 24

v d— Ky (3.24)

Then arguing as above, we can prove that system (3.2) has a unique sgiutipsuch
that relations (3.23) and (3.24) are satisfied.
Finally, suppose that
EB - KC=0. (3.25)

Then equation (3.3) becomes
h(z) =C¢z* + pr +v =0, ( = BE + KBa — BC — dC*. (3.26)
If ¢ # 0, then using
a a?’BE oF @*BK da’K
(@)=

I I +C+T+T>O’ h(0) =v <0,

we have that equation (3.26) has a unique solutio@i,n%).
Finally, suppose that = 0. Then since

a a’K a*B  aE
h<5>_ S+ T+ >0, h(0)=v <0,

equation (3.26) has a unique solution(itm %) This completes the proof. O

In the following proposition we study the boundedness and persistence of the posi-
tive solutions of system (1.2).

Proposition 3.2. Consider syster(l.2), where(3.1) holds and
Co 7é 0, ]{0 7é 0. (327)

Then every positive solution ¢1.2)is bounded and persists.
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Proof. Let (z,,y,) be an arbitrary solution of (1.2). Then using (1.2) and (3.27) it is
obvious that

zngﬁ, Yn < n=12,..., (3.28)

Co = ko
which implies thatz,, v,,) is a bounded solution. We prove that,, v,,) persists. Sup-
pose that:,, does not persist. Without loss of generality we may assume that there exists
a subsequence. such that relations (2.7) are satisfied. Hence, from (1.2)

- a'ynr—l
— _ 7 )
1+ E Cilfn,—1-2i + g bi%n, —2i—2
=0 i=0

Then from (2.7) and (3.28), we get

T

r

lim y,,, 1 = 0. (3.29)

In addition, since from (1.2)

dxnr—Q

s q
1+ Z kitp, —o—2i + Z €iYn,—2i—3
i=0 i=0

Yn,—1 = ;

relation (3.29) implies that
lim Tn,—2 = 0.

r—00

Working inductively, we can prove that
rIEEOx””'_% =0, TIEEOy"r—%—l =0, :=0,1,.... (3.30)
Therefore, from (3.1) and (3.30) for sufficiently largg we get
Tno—o; <€ 7€{1,2,...,0+ 1}, Yn.—ow—1 <€, we{0,1,...,¢0+1}, (3.31)
where¢ = max{p, s}, v = max{m, ¢} ande is a sufficiently small positive nhumber

such that
ad

(1+e(C+B))(1+e(K+FE))
Moreover, from (1.4), we have

> 1. (3.32)

Tn

T

adx,, _o

m p s q ’
(1 + Z Cilfn,—1—2i + Z bil’n,—Qi—2> (1 + Z kixn, —o—2; + Z eiynr—Qi—?))
i=0 =0 =0 i=0

(3.33)
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Therefore, from relations (3.31)—(3.33), it follows that

adx,, o
(1+ (C+ B)e)(1+ (K + E)e)

which contradicts to (2.7). Therefore, persists. Using the same argument we can
easily prove that alsg, persists. This completes the proof. O

Ty, > > Ty, —2

In the next proposition we study the convergence of the positive solutions of the
system (1.3) to the unique positive equilibrium.

Proposition 3.3. Suppose that relation8.1), (3.27)and

Co > E, ko > B (334)
hold. Then every positive solution ¢f.3) tends to the unique positive equilibrium of
(1.3).

Proof. Suppose that eithey # E or kg # B holds. Using Proposition 3.2 we have that
(2.21) are satisfied. Then from (1.3) we take

als aly
1 S ) ll Z )
1+00L2—|—Bl1 1—|—Col2—|—BL1
L2 S dLl 5 l2 Z dll .
14 koly + Ely 1+ koly + E'Ls
Then relations (3.35) imply that

L

(3.35)

LiL, < adL1L2

Y2 =1+ oLy + BL)(1+ koLy + Ely)’
L, > adl1l2

102 Z

(1+ coly + BLy)(1 + koly + EL)
which implies that
(1+ coLa 4+ BlL)(1+ koLy + Ely) < (1+ coly + BLy)(1 + koly + ELy).  (3.36)
So from (3.34), (3.36), we have
(ko — B)(L1 — lh) + (co — E)(Ly — l2) + (coko — BE)(L1Ly — l1l3) <0

which implies thatl,; = [, Ly = I.
Now, suppose that
co=F, ky=B. (3.37)

Then from (3.35) we get

l Ly 1 L
d= <1+ Bl +cola < a=2, a2 <1+ cyly+ BLy < d=2,
ly L L Ly



130 G. Papaschinopoulos, C. J. Schinas, and G. Stefanidou

from which we take

dllLl = al2L2. (338)
From (3.35), (3.37) and (3.38), we get
L112 S a,LQZQ _ dLlll 7
1—|—C()L2+Bl1 1—|—C()L2+Bl1
l1L2 Z OJLQZQ _ dLlll ’
1 + ColQ + BL1 1 -+ Colg -+ BL1 (3 39)
dLlll aL2l2 .
Lyly < = ;
1+ BL1 + Colg 1+ BL1 + ColQ
L1l2 > dLlll _ aL2l2

B 1+B11+COL2 1—|—Bl1+COL2'
Then relations (3.35), (3.37) and (3.39) imply that
dll dLl

l — L fr
2 1+00L2+Bl17 2 1+Col2+BL17

(3.40)

. al2 I — CLLQ
T 1+BLi+cly ' 1+ Bl +colsy
Without loss of generality we may assume that there exists a subseqyesneoeh that

l

limx,, =Ly, limx, =DM, i=2,3,...,2p+2,

r—00

(3.41)
limy, =R, 1=1,2,...,2¢+ 3.
From (1.3) we have
aynr—l
Ty, = >
1+ coYn,—1 + Z by, —2i—2
=0
and so from (3.41) we get
CLRl aLQ
Ly = < . 3.42
! P — 1+ Bll -+ C()L2 ( )
1+ colRy + Z bi Moo
=0
Thus, from (3.40) and (3.42) we have
Ly =Ry, My2=104, i=0,1,...,p. (3.43)
In addition, from (1.3) we get
dan72

Yn,.—1 = )

q
1+ koxpn,—2 + Z €iYn—2i—3
i=0
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and so from (3.41) we have

L= dMQQ =17 k:gdLLllJr Ely’ (3.44)
L+ koMy + ) eiRois
1=0
Then from (3.40) and (3.44) we get
My=1Li, Roys=1, i=0,1,...,q. (3.45)
Therefore, from (3.43) and (3.45) we take
My =1, =1. (3.46)
Finally, using (3.40) and (3.46) it is obvious that
Ly = 1s.
This completes the proof. O

In the last proposition we study the global asymptotic stability of the positive equi-
librium of (1.5). We need the following lemma which has been proved in [26]. For
readers’ convenience we state it here without its proof.

Lemma 3.4. Consider the algebraic equation
22 4+ a1z + ag = 0. (3.47)
Then all roots of(3.47)are of modulus less than 1 if and only if
lai| < ap+1<2. (3.48)
Proposition 3.5. Consider syster(i.5), where(3.1) holds. Suppose also that
c>e, k>0 (3.49)

Then the unique positive equilibriufa, i) of (1.5)is globally asymptotically stable.

Proof. We prove thatz, ) is locally asymptotically stable. The linearized system of
(1.5) aboutz, 3) is

aby a(l+ bz)
Tntl = = e il T T e Y
(1+ cy+ bx) (1+ cy+bx) (3.50)
d(1 + ey) edT '

I T U kT v e (A4 kz + g2t
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It is obvious that system (3.50) is equivalent to the system

0O H T 0 Tn
B | M0 O N | Yn
wn—l—l - Awn) A - 1 0 0 0 9 Wy, = Ty 1 9
0 1 0 0 Yn—1
o a(l:kbx)_ CT—_ a_by .
(1+cy+ bx)? (14 cy+ bx)?
V- d(ljreg)_ CN=_ eflf .
(14 kZ + eg)? (1+ kx4 ey)?
Then the characteristic equation éfis
M- XN (HM +N+T)+ NT =0. (3.51)
Since(z, y) is the positive equilibrium of (1.5), we have
1 T 1 7
- - - = Z. 3.52
l+cy+bx ay 1+kz+ey dr (3.52)
Hence,
=2 2 =\ 72 ~2
SO Ui LA S Ul ) A N (3.53)
ay? ay dz? dz
Relations (3.49), (3.52) and (3.53) imply that
be bead be
NT=—ay< ———=—< 1. 3.54
adxy < adck ck < ( )
Moreover, from (3.1), (3.52) we have
1 2 —2
HM+N+T—NT = —(1+eg+b.f:—bd‘% —eayf)
ad 0] x
1 ( S - —2 - - ) —
= — |1+ ey+ bx — bx — bkx” — bexy — ey — cey” — ebazy) (3.55)
ad
_ 1 —2 —— —9
= @<1 — bkx® — 2bexy — cey ) <1,
1 o 7 v
HM+N+T+NT+1= —<1+ey+bx+266xy—bd7—ea,f> +1
ad 1y T

1
= —d<1 + ey + bT + 2bexy — ey — ceg2 — ebzry — bx — bkz? — be:fgj) +1
a

1
= — (ad + 1 — bkz* — cegj2>
ad

1
= —((1 + ¢y + bz)(1 + kT + ) + 1 — bkz? —cegj2> > 0.
a

(3.56)
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Therefore, relations (3.54), (3.55) and (3.56) imply that all conditions of Lemma 3.4
are satisfied. Therefore, all the roots of equation (3.51) are of modulus less than 1
which implies thatz, y) is locally asymptotically stable. Using Proposition 3.3, 7)

is globally asymptotically stable. This completes the proof. ]

4 Conclusion

In this paper, we considered two systems of rational difference equations of the form
(1.1) and (1.2). These systems are modifications of the Beverton—Holt equation which
is the discrete analog of the logistic differential equation studied in [12]. Systems of this
form are worthwhile studying since many authors studied discrete competition models
(see [13] and the references cited therein).

The main results of this paper were presented in two sections. In Section 2 we
studied system (1.1) and in Section 3 system (1.2). Summarizing the results of Sections
2 and 3 we get the following statements, concerning both systems.

(i) We studied the existence and the unigueness of the positive equilibrium of the sys-
tems.

(i) We found conditions so that every positive solution of the systems is bounded and
persists.

(iif) We investigated the convergence of the positive solutions of the system (1.1) and
system (1.3) which is a special case of system (1.2).

(iv) We studied the global asymptotic stability to the unique positive equilibrium of
systems (1.4) and (1.5), which are special cases of systems (1.1) and (1.2) respec-
tively.

Finally, we state the following open problems.

Open Problemt. 1. Consider the systems of difference equations (1.1) and (1.2), where
a,d, b1 =0,1,...,p,¢,1=0,1,... mye;, 2 = 0,1,...,q, k; € 0,1,...,s are
nonnegative constants, the initial values of (ktl): = —7m,—7 + 1,...,0, y;, i =
—7,—7 + 1,...,0, 7 = max{p, s}, 7 = max{m,q} are positive real numbers and
the initial values of (1.2);, i = =X\, = A+ 1,...,0, 45,4 = —p,—p+1,...,0, A =
max{2p + 1,2s}, p = max{2¢ + 1,2m} are also positive real numbers. Prove that:

I. If relations (2.1) and (2.5) are satisfied, then every positive solution of (1.1) tends
to the unique positive equilibrium of (1.1).

II. If relations (3.1) and (3.27) hold, then every positive solution of (1.2) tends to the
unique positive equilibrium of (1.2).
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