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Masaryk University, Janáčkovo nám. 2a, CZ–60200 Brno, Czech Republic

E-mail: hilscher@math.muni.cz

Vera Zeidan

Department of Mathematics, Michigan State University,
East Lansing, MI 48824–1027, USA

E-mail: zeidan@math.msu.edu

Abstract

In this paper we consider a discrete linear-quadratic regulator problem in the setting
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1. Introduction

In this paper we study the discrete linear-quadratic regulator problem consisting of min-
imizing the functional

F(x, u) := xT
N+1� xN+1+

N∑
k=0

{
xT

k CT
k Akxk+2 xT

k CT
k Bkuk+uT

k DT
k Bkuk

} → min, (P)

subject to constraints

xk+1 = Akxk + Bkuk, k ∈ [0, N], x0 = x∗
0 . (1.1)

We assume that n and N are given positive integers, [0, N] is the discrete interval
{0, 1, . . . , N}, Ak, Bk, Ck, Dk, � are given real n × n matrices such that the 2n × 2n

matrix

Sk :=
(

Ak Bk

Ck Dk

)
is symplectic, i.e., ST

k J Sk = J ,

where J := (
0 I−I 0

)
is the 2n × 2n skew-symmetric matrix, and � is symmetric.

The quadratic functional F is associated to the discrete symplectic system

xk+1 = Akxk + Bkuk, uk+1 = Ckxk + Dkuk, k ∈ [0, N]. (S)

Such systems were introduced in the monograph [1, Chapter 3] and since then attracted
full attention of many researchers, see e.g., [2–18, 20, 21, 23]. It was noted in [1] that
discrete linear Hamiltonian systems

�xk = Akxk+1 + Bkuk, �uk = Ckxk+1 − AT
k uk, k ∈ [0, N], (H)

where Bk and Ck are symmetric and I − Ak is invertible, are actually symplectic. That
is, the transition matrix

SH
k :=

(
Ãk ÃkBk

CkÃk CkÃkBk + I − AT
k

)
, where Ãk := (I − Ak)

−1,

from (xk, uk) to (xk+1, uk+1) in system (H) is symplectic. In this case, the coefficients
in system (S) are then

Ak := Ãk, Bk := ÃkBk, Ck := CkÃk, Dk := CkÃkBk + I − AT
k . (1.2)

We can see that in this Hamiltonian case the matrix Ak is invertible for all k ∈ [0, N].
On the other hand, it is also known that every symplectic system (S) with invertible Ak

is in fact Hamiltonian, and in that case one has

Ak := I − A−1
k , Bk := A−1

k Bk, Ck := CkA−1
k

with symmetric Bk and Ck.
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In [19] the authors studied the discrete linear regulator problem associated with
the linear Hamiltonian system (H), derived minimal assumptions which guarantee its
solvability, and constructed the optimal (feedback) solution from a certain generalized
discrete Riccati equation. The purpose of this paper is to extend these results to general
discrete symplectic systems. This will allow the inclusion of systems for which the
evolution matrix �k+1,j := AkAk−1 . . . Aj could be singular, such is the case in discrete
trigonometric or self-reciprocal systems that are studied e.g., in [2, 5]. We refer to
the literature listed in [19] for the traditional treatment of the discrete linear-quadratic
regulator problem.

In Section 2 we establish minimal assumptions for the solvability of the problem
(P). They consist of two conditions, namely the minimality condition (or the so-called
“P-condition”)

Pk ≥ 0 for all k ∈ [0, N], (1.3)

where
Pk := (DT

k − BT
k Qk+1) Bk, (1.4)

and the solvability condition

(I − PkP†
k ) BT

k (Qk+1Ak − Ck) = 0 for all k ∈ [0, N], (1.5)

in which P†
k denotes the Moore–Penrose generalized inverse of the indicated matrix.

Conditions (1.4) and (1.5) involve a symmetric matrix Qk+1 which is constructed from
a certain discrete Riccati matrix equation with an endpoint condition at k = N + 1.
The matrices Qk are also (indirectly) used for the construction of the optimal feedback
solution to the problem (P). In Section 3 we compare the obtained Riccati equation
with a discrete Riccati equation studied in the literature in connection with the discrete
symplectic system (S). Finally, In Section 4 we present several examples illustrating the
applicability of the results.

2. Discrete Symplectic LQR-Problem

The property that Sk (and ST
k ) is a symplectic matrix means that the coefficients satisfy

AT
k Dk − CT

k Bk = AkDT
k − BkCT

k = I,

CT
k Ak, DT

k Bk, AkBT
k , CkDT

k are symmetric.
(2.1)

These identities will be frequently used in our calculations.
For x ∈ R

n and k ∈ [0, N +1] we define the value function V (x, k) by the following.
We set V (x, N + 1) := xT � x and for k ∈ [0, N]

V (x, k) := min
u∈Rn

{
xT CT

k Akx+2 xT CT
k Bku+uT DT

k Bku+V (Akx+Bku, k+1)

}
, (2.2)
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provided the minimum exists. If we denote xk+1(u) := Akxk + Bku, then the value
function at (xk, k) is

V (xk, k) = min
u∈Rn

{
xT CT

k Akx + 2 xT CT
k Bku + uT DT

k Bku + V
(
xk+1(u), k + 1

)}
.

The Bellman principle of dynamic programming says that if (x∗, u∗) is a pair satisfying
(1.1), then it is optimal for problem (P) if and only if the minimum in (2.2) for V (x∗

k , k)

is attained at u∗
k for all k ∈ [0, N ].

The results of this paper are based on the following recursive matrix definitions. Put
QN+1 := −� and then define for k ∈ [0, N] the matrix Pk by (1.4) and matrices Fk and
Qk by

Fk := P†
k BT

k (Qk+1Ak − Ck), (2.3)

Qk := FT
k PkFk + AT

k (Qk+1Ak − Ck). (2.4)

These definitions are recursive in the sense that from QN+1 we define PN , then FN , then
QN , and then back to PN−1, FN−1, QN−1, and so on. Note that all the matrices Pk, Fk,
and Qk are well defined (once QN+1 := −� is given) and that Pk and Qk are symmetric.

Remark 2.1.

(i) Solvability condition (1.5) can now be rewritten as the identity

PkFk = BT
k (Qk+1Ak − Ck) for all k ∈ [0, N]. (2.5)

(ii) Equation (2.4) is a discrete Riccati equation. Under solvability condition (1.5) it
takes the form

Qk = (F T
k BT

k + AT
k ) (Qk+1Ak − Ck). (2.6)

For its relation to another discrete Riccati equation studied in the literature in
connection with discrete symplectic systems see Section 3.

One of the main results of this paper is the following characterization of conditions
(1.3) and (1.5).

Theorem 2.2. Let Pk, Fk, and Qk be defined by (1.4), (2.3), and (2.4), respectively,
with QN+1 := −�. Then the following statements are equivalent.

(i) Minimality condition (1.3) and solvability condition (1.5) are satisfied.

(ii) For all k ∈ [0, N] and for all x ∈ R
n, the minimum in (2.2) is attained at

ūk(x) = Fkx + (I − P†
k Pk) γk (2.7)

for some vector γk ∈ R
n, and hence the value function takes the form

V (x, k) = −xT Qkx. (2.8)
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Proof. “(i) ⇒ (ii):” Formula (2.8) holds at k = N + 1 by the definition of the matrix
QN+1. Fix now k ∈ [0, N ] and assume that (2.8) is satisfied at an index k + 1 with a
symmetric matrix Qk+1. Then (2.2) yields

V (x, k) = min
u∈Rn

{
xT CT

k Akx + 2 xT CT
k Bku + uT DT

k Bku (2.9)

−(Akx + Bku)T Qk+1(Akx + Bku)
}

= min
u∈Rn

{
Mk(u)

} + xT AT
k (Ck − Qk+1Ak) x, (2.10)

where we set
Mk(u) := uT Pku + 2 xT (CT

k − AT
k Qk+1) Bku.

Since ∇2Mk(u) = Pk ≥ 0 is assumed, the minimum in (2.10) is attained at some ū ∈ R
n

whenever ∇Mk(ū) = 0, i.e., whenever

2 Pkū + 2 BT
k (Ck − Qk+1Ak) x = 0.

This means that ū must solve the linear equation

Pkū = BT
k (Qk+1Ak − Ck) x. (2.11)

This equation has a solution if and only if its right-hand side lies in Im Pk = Ker(I −
PkP†

k ), which is guaranteed by assuming (1.5), and in this case the solution ū = ū(x)

has the form

ū = P†
k BT

k (Qk+1Ak − Ck) x + (I − P†
k Pk) γk = Fkx + (I − P†

k Pk) γk

for some vector γk ∈ R
n. This yields that Pkū = PkFkx and that

V (x, k) = Mk(ū) + xT AT
k (CT

k − Qk+1Ak) x

= −xT
{
FT

k PkFk + AT
k (Qk+1Ak − Ck)

}
x = −xT Qkx.

“(ii) ⇒ (i):” Fix k ∈ [0, N] and x ∈ R
n. Let ū = ū(x), defined by (2.7), be a vector

for which the minimum of Mk(u) is attained and formula (2.8) holds. Since Mk(u) is
quadratic, it follows that Pk = ∇2Mk(ū) ≥ 0, i.e., minimality condition (1.3) holds, and
∇Mk(ū) = 0, i.e., ū solves equation (2.11). Hence,

(I − PkP†
k ) BT

k (Qk+1Ak − Ck) x = 0.

Since x ∈ R
n was arbitrary, it follows that solvability condition (1.5) is satisfied as well.

The proof is now complete. �

The following characterization of optimal processes for the linear regulator problem
(P) is an immediate consequence of Theorem 2.2 and Bellman’s principle of dynamic
programming.
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Corollary 2.3. Assume that minimality condition (1.3) and solvability condition (1.5)
are satisfied. Then the linear regulator problem (P) has an optimal solution (x∗, u∗) if
and only if for all k ∈ [0, N]

u∗
k = Fkx

∗
k + (I − P†

k Pk) γk (2.12)

for some vectors γk ∈ R
n, and hence V (x∗

k , k) = −(x∗
k )T Qkx

∗
k .

Next we wish to analyze the form of the feedback law (2.12). For this we need one
auxiliary calculation.

Lemma 2.4. Assume that solvability condition (1.5) holds. Then

BkFk = BkQk for all k ∈ [0, N]. (2.13)

Proof. By using Remark 2.1 (both parts), identities (2.1), and the definition of Pk we
have

QkBT
k = (F T

k BT
k + AT

k ) (Qk+1Ak − Ck) BT
k

= FT
k BT

k (Qk+1AkBT
k − CkBT

k ) + AT
k Qk+1AkBT

k − AT
k CkBT

k

= FT
k BT

k

{
(Qk+1Bk − Dk) AT

k + I
} + (AT

k Qk+1 − CT
k ) BkAT

k

= −FT
k PkAT

k + FT
k BT

k + FT
k PkAT

k = FT
k BT

k .

This shows the desired identity. �

Remark 2.5. Formula (2.13) implies that BkFkBT
k = BkQkBT

k , which means that, under
(1.5), the matrix Fk is symmetric on Im BT

k . Furthermore, Riccati equation (2.6) then
takes the form

Qk = (Ak + BkQk)
T (Qk+1Ak − Ck). (2.14)

As a consequence of Lemma 2.4 we get the “classical” results in the sense that the
control law contains the Riccati equation solution Qk. The following result is new even
for the case of Hamiltonian systems.

Corollary 2.6. Assume that solvability condition (1.5) holds and Bk is invertible for all
k ∈ [0, N]. Then Fk = Qk is symmetric and hence, the control law in (2.12) reduces to

u∗
k = Qkx

∗
k + (I − P†

k Pk) γk for all k ∈ [0, N]. (2.15)

Corollary 2.7. Assume that Pk is invertible for all k ∈ [0, N]. Then Fk = Qk is
symmetric and hence, the control law is unique and reduces to

u∗
k = Qkx

∗
k for all k ∈ [0, N].

Proof. The invertibility of Pk implies that Bk is invertible and that solvability condition
(1.5) is satisfied trivially. Hence, the result follows from Corollary 2.6. �
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The following characterization of the optimality of a process (x∗, u∗) in problem (P)
is a consequence of the proof of Theorem 2.2.

Corollary 2.8. A pair (x∗, u∗) is optimal for the problem (P) if and only if minimality
condition (1.3) holds and

(I − PkP†
k ) BT

k (Qk+1Ak − Ck) x∗
k = 0 for all k ∈ [0, N]. (2.16)

Note that the above condition involves the “state” x∗
k only. The optimal “control” u∗

k is
then given via formula (2.12).

Remark 2.9.

(i) In the Hamiltonian case, i.e., when the coefficients Ak, Bk, Ck, and Dk are given
by (1.2), the results of this paper reduce to the corresponding results in [19], with
the exception of Corollary 2.6 which is new even in the Hamiltonian setting.

(ii) It is interesting to note that the matrix Pk was previously used in the focal point
definition for conjoined bases (X, U) of system (S). More precisely, a solution
(X, U) of (S) with XT

k Uk symmetric and rank
(
XT

k UT
k

) = n has no focal point
in the interval (k, k + 1] provided

Ker Xk+1 ⊆ Ker Xk and XkX
†
k+1Bk ≥ 0,

see e.g., [4, 18]. Then it is shown in these references that, under the above kernel
condition,

XkX
†
k+1Bk = (DT

k − BT
k Qk+1) Bk = Pk,

for a suitable choice of symmetric Qk+1.

(iii) Another appearance of the matrix Pk is in the discrete Picone identity, which shows
how to complete the quadratic term in the functional F to a “square”, i.e.,

xT
k CT

k Akxk + 2 xT
k CT

k Bkuk + uT
k DT

k Bkuk = zT
k Pkzk + �(xT

k Qkxk)

for a suitable choice of symmetric Qk and for zk := uk − Qkxk, see e.g., [4, 8].

3. Discrete Riccati Equations

The discrete Riccati matrix equation traditionally associated with the symplectic system
(S) and studied in the literature is of the form

Qk+1(Ak + BkQk) − (Ck + DkQk) = 0, k ∈ [0, N]. (3.1)

See for example [4, 14, 16–18]. In this section we wish to compare discrete Riccati
equation (3.1) with equations (2.4), (2.6), and (2.14).
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One reason for studying equation (3.1) is that its solutions generate “good” solutions
of the system (S), namely the following holds.

Proposition 3.1. Riccati equation (3.1) has a solution Qk on [0, N + 1] if and only if
system (S) has a solution (X, U) with Xk invertible for all k ∈ [0, N + 1].

The statement of Proposition 3.1 usually contains the invertibility of the matrix Ak +
BkQk (and the symmetry of Qk and XT

k Uk), see e.g., [18, Theorem 7] in the case of
zero endpoints. However this invertibility condition is a simple consequence of equation
(3.1), as we shall see in Lemma 3.2 below, so that Proposition 3.1 is now in the same
form as in the continuous time case, see e.g., [22, Theorem 7.1]. Note that the results
below do not require the symmetry of Qk (unless explicitly stated).

Lemma 3.2. Matrices Qk, k ∈ [0, N + 1], solve

BT
k

{
Qk+1(Ak + BkQk) − (Ck + DkQk)

} = 0 for all k ∈ [0, N] (3.2)

if and only if DT
k − BT

k Qk+1 and Ak + BkQk are invertible and are inverses of each
other, that is,

(DT
k − BT

k Qk+1) (Ak + BkQk) = I for all k ∈ [0, N]. (3.3)

Consequently, if condition (3.3) holds and Bk is invertible for all k ∈ [0, N], then Qk

solves Riccati equation (3.1).

Proof. Assume that some matrices Qk satisfy (3.2). Then using identities (2.1) we obtain

(DT
k − BT

k Qk+1) (Ak + BkQk) = DT
k (Ak + BkQk) − BT

k (Ck + DkQk)

= DT
k Ak − BT

k Ck + (DT
k Bk − BT

k Dk) Qk = I.

This yields that (3.3) is satisfied. Following the backstep calculation, the converse of
this lemma also holds. �

The next two lemmas show the relation between Riccati equations (2.14) and (3.1)
for the case of symmetric Qk.

Lemma 3.3. Assume that symmetric matrices Qk, k ∈ [0, N+1], solve Riccati equation
(3.1). Then they solve Riccati equation (2.14).

Proof. From equation (3.1) we have the identity

Qk+1Ak − Ck = (Dk − Qk+1Bk) Qk.

Then by using Lemma 3.2 and the symmetry of Qk+1 we get

Qk = (Dk − Qk+1Bk)
−1(Qk+1Ak − Ck) = (Ak + BkQk)

T (Qk+1Ak − Ck),
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i.e., Qk solves equation (2.14). �

Lemma 3.4. Assume that matrices Qk, k ∈ [0, N + 1], satisfy Riccati equation (2.14).
Then {

(Ak + BkQk)
T (Dk − Qk+1Bk) − I

}
AT

k = 0 for all k ∈ [0, N]. (3.4)

Consequently, if a symmetric Qk solves Riccati equation (2.14) and Ak and Bk are
invertible for all k ∈ [0, N], then Qk solves Riccati equation (3.1).

Proof. If we multiply Riccati equation (2.14) by BT
k from the right side, add AT

k on both
sides, and use properties (2.1), then we get

AT
k + QkBT

k = AT
k + (Ak + BkQk)

T (Qk+1AkBT
k − CkBT

k )

= AT
k + (Ak + BkQk)

T (Qk+1BkAT
k − DkAT

k + I ).

Hence, we obtain the identity

0 = AT
k + (Ak + BkQk)

T (Qk+1Bk − Dk) AT
k ,

which yields equation (3.4). Now if Ak is invertible and Qk is symmetric, then condition
(3.3) holds, which together with the assumption of the invertibility of Bk implies the
validity of Riccati equation (3.1), by Lemma 3.2. �

4. Examples

In this section we present examples illustrating the applicability of the results.

Example 4.1. Let n = 1 and Sk ≡ (
1 −1
4 −3

)
, i.e., Ak = −Bk ≡ 1, Ck ≡ 4, Dk ≡ −3, and

� = −2. Then AkDk −BkCk ≡ 1, so that these coefficients define a discrete symplectic
system. It follows that Pk = 3 − Qk+1, Fk = (Qk+1 − 4)/(Qk+1 − 3), and Qk = Fk.
Hence, given that QN+1 := −� = 2 we get

Pk ≡ 1 > 0, Qk = Fk ≡ 2 for all k ∈ [0, N]
and solvability condition (1.5) holds, since Pk is invertible. Hence, by Corollary 2.7, the
optimal feedback law takes the form u∗

k = 2 x∗
k and V (x∗

k , k) = −2 (x∗
k )2.

In the previous example the matrix Ak is invertible, so that the corresponding discrete
symplectic system can be written as a linear Hamiltonian system (H) and the optimal
solution of the associated problem (P) can be obtained from [19]. Hence, it is more
appropriate to give examples with Ak singular to which the results of [19] cannot be
applied.

First note that if Ak = 0, then coefficient identities (2.1) imply that Bk and Ck are
invertible with Ck = −BT −1

k , and DT
k Bk = BT

k Dk. Consequently, solvability condition
(1.5) yields that I − PkP†

k = 0, i.e., the matrix Pk is necessarily invertible, and thus
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Qk = Fk = P−1
k . On the other hand, the invertibility of Pk always implies the solvability

condition. Hence, when Ak = 0, the solvability condition and the invertibility of the
matrices Pk are equivalent.

Example 4.2. Let Ak ≡ 0, Bk = −Ck ≡ I , Dk ≡ 2I , and � = −I . Then these
coefficients define a discrete symplectic system. It follows that Pk = 2I − Qk+1,
Fk = P−1

k , and Qk = Fk. We know from the above considerations that the invertibility
of Pk is a necessary condition for solvability condition (1.5). Hence, given that QN+1 :=
−� = I , we get

Pk ≡ I > 0, Qk = Fk ≡ I for all k ∈ [0, N].
By Corollary 2.7, the optimal feedback law yields u∗

k = x∗
k and V (x∗

k , k) = −‖x∗
k‖2.

From the above, one can see that the most interesting examples arise when Ak is
singular but never a zero matrix, Pk is positive semidefinite but never positive definite,
and solvability condition (1.5) holds. In the following example we show that such
situation can indeed be treated and solved by the results of this paper.

Example 4.3. Let n = 2 and

Ak ≡
(

1 0
0 0

)
, Bk ≡

(
0 −bd

0 b

)
, Ck ≡

(
0 0

−dq −1

b

)
,

Dk ≡
(

1 −bdq

d b + 1

b

)
, � =

(−q 0
0 −1

)
,

where b, d, q ∈ R are given real numbers and b 
= 0. It follows that these coefficients
define a discrete symplectic system and with QN+1 := −� we have

Pk = DT
k Bk − BT

k Qk+1Bk ≡
(

0 0
0 1

)
, P†

k = Pk,

Fk = P†
k BT

k (Qk+1Ak − Ck) =
(

0 0
0 1

)
,

Qk = FT
k PkFk + AT

k (Qk+1Ak − Ck) =
(

q 0
0 1

)
,

and solvability condition (1.5) is

(I − PkP†
k ) BT

k (Qk+1Ak − Ck) =
(

1 0
0 0

) (
0 0

−bd b

) (
q 0

dq
1

b

)
=

(
0 0
0 0

)
.

Hence, by Corollary 2.3, the optimal feedback law takes the form

u∗
k = Fkx

∗
k + (I − P†

k Pk) γk =
(

0 0
0 1

)
x∗

k +
(

1 0
0 0

)
γk
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for some vectors γk ∈ R
2, and

V (x∗
k , k) = −(x∗

k )T
(

q 0
0 1

)
x∗

k .

Note that even though in Example 4.2 the matrix Ak is singular and in Example 4.3
both Ak and Bk are singular, the corresponding matrices Qk solve both Riccati equations
(2.14) and (3.1), and condition (3.3) holds.
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[16] R. Hilscher and V. Růžičková, Riccati inequality and other results for discrete
symplectic systems, J. Math. Anal. Appl., 322(2):1083–1098, 2006.
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