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Abstract

In this paper we are concerned with the oscillation of solutions of higher-order
sublinear neutral type difference equation with oscillating coefficients. We obtain
some comparison criteria for oscillatory behaviour.
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1. Introduction

We consider the higher-order sublinear difference equation of the form

∆n[y(k) + p(k)y(τ(k))] + q(k)yα(σ(k)) = 0, n ∈ N \ {1}, k ∈ N (1.1)

whereα ∈ (0, 1) is a ratio of positive odd integers. Throughout this work, we assume
that

i) p is an oscillating function withp(k) → 0 ask →∞,
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ii) q(k) ≥ 0 for k ≥ k0,

iii) τ(k) < k with τ(k) →∞ ask →∞ andσ(k) < k with σ(k) →∞ ask →∞.

By a solution of equation (1.1) we mean a real sequence{y(k)} which is defined for
all k ≥ min

i≥0
{τ(i), σ(i)} and satisfies equation (1.1) for sufficiently largek. We consider

only such solutions which are nontrivial for all largek. As it is customary, a solution
y(k) is said to be oscillatory if the termsy(k) of the sequence are neither eventually
positive nor eventually negative. Otherwise, the solution is called nonoscillatory, real-
valued solution. A difference equation is called oscillatory if all of its solutions oscillate.
Otherwise, it is nonoscillatory. In this paper, we restrict our attention to real-valued
solutionsy(k).

Neutral difference equations find numerous applications in natural science and tech-
nology. For instance, they are frequently used for the study of distributed networks
containing lossless transmission lines. Recently, much research has been done on the
oscillatory and asymptotic behaviour of solutions of higher order delay and neutral delay
type difference equations. But there are very few results in the case when the coefficient
p is an oscillating function.

The purpose of this paper is to study oscillatory behaviour of solutions of equation
(1.1). For the general theory of difference equations, one can refer to [1–5]. Many
references for the applications of difference equations can be found in [4,5].

For the sake of convenience, the functionz(k) is defined as

z(k) = y(k) + p(k)y(τ(k)). (1.2)

2. Some Auxiliary Lemmas

Lemma 2.1. ( [2]) Let y(k) be defined fork ≥ k0 ∈ N, andy(k) > 0 with ∆ny(k) of
constant sign fork ≥ k0, n ∈ N and not identically zero. Then, there exists an integer
m, 0 ≤ m ≤ n with (n+m) even for∆ny(k) ≥ 0 or (n+m) odd for∆ny(k) ≤ 0 such
that

i) m ≤ n− 1 implies(−1)m+i∆iy(k) > 0 for all k ≥ k0,m ≤ i ≤ n− 1

ii) m ≥ 1 implies∆iy(k) > 0 for all largek ≥ k0, 1 ≤ i ≤ m− 1.

Lemma 2.2. ( [2]) Let y(k) be defined fork ≥ k0, andy(k) > 0 with ∆ny(k) ≤ 0 for
k ≥ k0 and not identically zero. Then, there exist a largek1 ≥ k0 such that

y(k) ≥ 1

(n− 1)!
(k − k1)

n−1∆n−1y(2n−m−1k), k ≥ k1

wherem is defined as in Lemma 2.1. Further, ify(k) is increasing, then

y(k) ≥ 1

(n− 1)!

(
k

2n−1

)n−1

∆n−1y(k), k ≥ 2n−1k1.
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Lemma 2.3. ([6]) Let α ∈ (0, 1) andl ∈ N. Then the difference inequality

∆u(n) + q(n)uα(n− l) ≤ 0

does not have any eventually positive solutions if

∞∑
s=0

q(s) = ∞.

3. Main Results

Theorem 3.1. Assume thatn is even and inequality

∆z(k) +
1

(2(2n−1)n−1(n− 1)!)α
q(k)σα(n−1)(k)zα(σ(k)) ≤ 0 (3.1)

has not any positive bounded solution for all sufficiently largek. Then every bounded
solution of equation (1.1) is either oscillatory or tends to zero ask →∞.

Proof. Assume that equation (1.1) has a bounded nonoscillatory solutiony(k). Without
loss of generality, assume thaty(k) is eventually positive (the proof is similar when
y(k) is eventually negative). That is,y(k) > 0, y(τ(k)) > 0 andy(σ(k)) > 0 for all
k ≥ k1 ≥ k0. Further, suppose thaty(k) does not tend to zero ask →∞. By (1.1) and
(1.2) we have

∆nz(k) = −q(k)yα(σ(k)), (0 < α < 1, k ≥ k1). (3.2)

That is∆nz(k) < 0. It follows that∆az(k) (a = 0, 1, 2, . . . , n−1) is strictly monotone
and eventually of constant sign. Sincey(k) is bounded, by virtue of (i) and (1.2) there
is a k2 ≥ k1 such thatz(k) > 0. Becausen is even, by Lemma 2.1, sincem = 1
(otherwise,z(k) is not bounded) there existsk3 ≥ k2 such that fork ≥ k3

(−1)i+1∆iz(k) > 0 (i = 0, 1, 2, . . . , n− 1). (3.3)

In particular, since∆z(k) > 0 for k ≥ k3, z(k) is increasing. Sincey(k) is bounded,
lim
k→∞

p(k)y(τ(k)) = 0 by (i). Then there exists ak4 ≥ k3 by (1.2) such that

y(k) = z(k)− p(k)y(τ(k)) ≥ 1

2
z(k) > 0

for k ≥ k4. We may find ak5 ≥ k4 such that fork ≥ k5 we havey(σ(k)) ≥ 1

2
z(σ(k)) >

0 and

yα(σ(k)) ≥
(

1

2
z(σ(k))

)α

> 0, 0 < α < 1. (3.4)



222 I. Kir and Y. Bolat

From (3.2) and (3.4) we obtain the result of

∆nz(k) + q(k)

(
1

2
z(σ(k))

)α

≤ 0, 0 < α < 1 (3.5)

for all largek ≥ k5. By Lemma 2.2, inequality (3.5) can be written as

∆nz(k) +
1

(2(2n−1)n−1(n− 1)!)α
q(k)σα(n−1)(k)(∆n−1z(σ(k)))α ≤ 0 (3.6)

for all k ≥ k5. Let us takeu(k) as∆n−1z(k), i.e.,u(k) = ∆n−1z(k) in (3.6). Thusu(k)
satisfies for large enoughk

∆u(k) +
1

(2(2n−1)n−1(n− 1)!)α
q(k)σα(n−1)(k)uα(σ(k)) ≤ 0. (3.7)

Inequality (3.7) does not have any eventually positive solutions by Lemma 2.3 and (3.1).
This contradicts the fact that∆n−1z(k) > 0 by (3.3). In the case wherey(k) is an
eventually negative solution, then−y(k) will be an eventually positive solution. The
proof of Theorem 3.1 is completed. ¥

Theorem 3.2. Assume thatn is odd and inequality

∆z(k) +
(k − k3)

α(n−1)

(2(n− 1)!)α
q(k)zα(σ(k)) ≤ 0 (3.8)

has not any positive bounded solution for all sufficiently largek. Then every bounded
solution of equation (1.1) is either oscillatory or tends to zero ask →∞.

Proof. Assume that equation (1.1) has a bounded nonoscillatory solutiony(k). Without
loss of generality, assume thaty(k) is eventually positive (the proof is similar when
y(k) is eventually negative). That is,y(k) > 0, y(τ(k)) > 0 andy(σ(k)) > 0 for
all k ≥ k1 ≥ k0. Further, suppose thaty(k) does not tend to zero ask → ∞. As
in the proof of Theorem 3.1, we can find thatz(k) is bounded. Becausen is odd, by
Lemma 2.1 sincem = 0 (otherwise,z(k) is not bounded) there existsk1 ≥ k0 such that

(−1)i∆iy(k) > 0, (i = 0, 1, 2, . . . , n− 1) (3.9)

for all k ≥ k1. In particular, since∆z(k) < 0 for k ≥ k1, z(k) is decreasing. Since
y(k) is bounded,lim

k→∞
p(k)y(τ(k)) = 0 by (i). Then there exists ak2 ≥ k1 by (1.2) such

thaty(k) = z(k)− p(k)y(τ(k)) ≥ 1

2
z(k) > 0 for k ≥ k2. We may find ak3 ≥ k2 such

that fork ≥ k3 we havey(σ(k)) ≥ 1

2
z(σ(k)) > 0 and

yα(σ(k)) ≥
(

1

2
z(σ(k))

)α

> 0, 0 < α < 1. (3.10)
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From (3.2) and (3.10) we can obtain the result of∆nz(k)+
1

2α
q(k)zα(σ(k)) ≤ 0 for all

largek ≥ k3. Sincez(k) is decreasing, we can write this last inequality in the form

∆nz(k) +
1

2α
q(k)zα(k) ≤ 0. (3.11)

By Lemma 2.2, inequality (3.11) can be written as

∆nz(k) +
(k − k3)

α(n−1)

(2(n− 1)!)α
q(k)∆n−1zα(k) ≤ 0. (3.12)

Let us takeu(k) as∆n−1z(k), i.e., u(k) = ∆n−1z(k) in the inequality (3.12). Thus

u(k) satisfies for large enoughk, ∆u(k) +
(k − k3)

α(n−1)

[2(n− 1)!]α
q(k)uα(k) ≤ 0 which does

not have any eventually positive solutions by Lemma 2.3 and (3.8). This contradicts
the fact that∆n−1z(k) > 0 by (3.9). In the case wherey(k) is an eventually negative
solution, then−y(k) will be an eventually positive solution. The proof of Theorem 3.2 is
completed. ¥
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