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Abstract

This article investigates the existence of solutions to boundary value problems
(BVPs) involving systems of first-order dynamic equations on time scales subject
to two-point boundary conditions. The methods involve novel dynamic inequali-
ties and fixed-point theory to yield new theorems guaranteeing the existence of at
least one solution.
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1. Introduction

This paper considers the existence of solutions to the first-order dynamic equation of
the type

™ 4+ b(t)x = h(t,x), t€la,cy:=]a,cNT, (1.1)

subject to the boundary conditions

G(z(a),z(c(c))) =0, a,ceT, (1.2)
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whereh : [a,c]Jr x R" — R" is a continuous, nonlinear function;is from a so-

called “time scale’'T (which is a nonempty closed subsetR¥, =2 is the generalized

derivative ofz; the functiond : [a,c|]t — R; a < c are given constants ifi; andG

is some known function describing a linear set of boundary conditions. Equation (1.1)

subject to (1.2) is known as a dynamic boundary value problem (BVP) on time scales.
If T = R, thenz® = 2’ and (1.1), (1.2) become the following BVP for ordinary

differential equations

' +b(t)x = h(t,z), t € la,cl, (1.3)
G(z(a),z(c)) = 0, (1.4)

If T = Z, thenz® = Az and (1.1), (1.2) become the following BVP for difference
equations

Az +b(t)r = h(t,z), te{a,a+1,...,c}, (1.5)
G(z(a),z(c+1)) =0, a,ceZ. (1.6)

There are many more time scales than jlist R andT = Z and hence many more
dynamic equations.
The field of dynamic equations on time scales provides a natural framework for:

1. establishing new insight into the theories of non-classical difference equations;
2. forming novel knowledge about “differential-difference” equations;

3. advancing, in their own right, each of the theories of differential equations and
(classical) difference equations.

In cases 1 and 2, interested researchers tend to analyze known results for differen-
tial equations and/or (classical) difference equations and then extend these ideas to
the more general time scale setting. Above, “non-classical”’ difference equations in-
clude, for example, the rapidly developinglifference equations [11], used in physics.
“Differential-difference” equations feature both differential equations and difference
equations. These type of equations appear in models where time flows continuously
and discretely at different periods, see Example 5.1.

In situation 3, researchers desire to formulate new results in the general time scale
setting, with particular significance being found when special cases of the new results
are novel, even for the differential or difference equation case.

Motivated by the above, and also by [17, 18], this article investigates the existence
of solutions to systems of dynamic equations in the general time scale setting. Some
sufficient conditions, in terms of dynamic inequalities fgnare presented that ensure
the existence of at least one solution to the dynamic BVP under consideration. The main
tools involve fixed-point methods and the Nonlinear Alternative.

This article advances all three situations raised above. In Sections 2 and 3, the
interest is in the first two situations. In Section 4, the interest lies in the third situation.
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To understand the notation used above, some preliminary definitions are needed.
Definition 1.1. Atime scal€eT is a nonempty closed subset of the real numiers

Since a time scale may or may not be connected, the concept of the jump operator
is useful, and we will use it to define the generalized derivativef the functionz.

Definition 1.2. The forward (backward) jump operato(t) att for t < sup T (respec-
tively p(t) att for ¢ > inf T) is given by

o(t)=inf{r >t: 7€ T}, (pt)=sup{r<t:7eT}) forallteT.

Define the graininess functign: T — [0, c0) asu(t) = o(t) — t.

Throughout this work the assumption is made thaias the topology that it inherits
from the standard topology on the real numbers

Definition 1.3. The jump operators andp allow the classification of points in a time
scale in the following way: I&(¢) > ¢, then the point is called right-scattered; while
if p(t) < t, thent is termed left-scattered. if< sup T ando(t) = ¢, then the point is
called right-dense; while if > inf T andp(t) = t, then we say is left-dense.

If T has a left-scattered maximum value then we definé™ = T — {m}. Other-
wiseT" =T.

Definition 1.4. Fix t € T* and letz : T — R". Definez(t) to be the vector (if it
exists) with the property that given> 0 there is a neighbourhodd of ¢ with

[z:(0(t)) — zi(s)] — 22 (t)[o(t) — 5]| < €|lo(t)—s| foralls e Uandeacti=1,...,n.

Call 2z (¢) the delta derivative af (t) and say that is delta differentiable.

Definition 1.5. If K~ (t) = k(t), then define the delta integral by

/ k(s)As = K(t) — K(a).

t ¢ ¢ t—1
If T =R, then/ k(s)As = / k(s)ds, while if T = Z, then/ k(s)As = Z k(s).

a

Once again, there are many more time scales thanRumtd Z and hence there are
many more delta integrals. For a more general definition of the delta integral see [2].

Theorem 1.6. [9] Assume that : T — R" and lett € T*".

(i) If kis delta differentiable at, thenk is continuous at.
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(i) If £ is continuous at andt is right-scattered, theh is delta differentiable at

with Lot "
EA(t) = —%éi :t< ).

(i) If kis delta differentiable andis right-dense, then

KA (t) = Tim F) = R()

s—t t—s

(iv) If k is delta differentiable at, thenk(o(t)) = k(t) + pu(t)k>(t).

The relatively young theory of time scales dates back to Hilger [9]. The monographs
[2] and [12] also provide an excellent introduction. For more recent developments in
dynamic equations on time scales, the reader is referred to [1, 3,5-8, 10, 14, 15, 19, 20].

A solution to (1.1), (1.2) is a continuous functien [a,o(c)]r — R" (denoted by
z € C([a,o(c)]r; R™)) that satisfies (1.1) and (1.2).

In what follows, ify, = € R", then(y, z) denotes the usual inner product ghd|
denotes the Euclidean norm obnR".

2. Existence for the Non-Periodic Case
This section considers the existence of solutions to the first-order dynamic equation
z® = f(t,x), t€[a,dr, (2.1)
subject to the boundary conditions
Mz(a) + Rx(o(c)) =0, a,ceT, (2.2)

where f : [a,c]r x R* — R" is a continuous, nonlinear function; < ¢ are given
constants irT; and M, R are given constants R.
Throughout this section, assume

M+ R+#0. (2.3)

Lemma 2.1. Suppose (2.3) holds. The BVP (2.1), (2.2) is equivalent to the integral
equation

t a(c)
x(t) = / f(s,x(s)) As — (M + R)_IR/ f(s,z(s)) As, t€a,clr. (2.4)

Proof. Letz : [a,0(c)]r — R" satisfy (2.1) and (2.2). It is easy to see that

z(t) = z(a) +/ f(s,z(s)) As, t€la,o(c)]r, (2.5)
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and o
slole) =ata)+ [ fs.a(s) s
So (2.2) gives

o(c)
0= Mz(a)+ R <x(a) + f(s,z(s)) As) (2.6)
and rearranging (2.6) yields
z(a)=—(M+R)"'R e f(s,z(s)) As. (2.7)

So substituting (2.7) into (2.5) gives, fok [a, o(c)]r,
o(c

) ¢
z(t)=—-(M+R)'R f(s,z(s)) As +/ f(s,z(s)) As. (2.8)

a

If = is a solution to (2.4), then is it easy to show that (2.1) and (2.2) hold by direct
calculation. [

The following is the main result of this section.

Theorem 2.2. Suppose (2.3) holds andl: [a, c]r x R®™ — R" is continuous. If there
exist non-negative constantsand K such that

1t ol <2a(q, f(t,q)) + K, V(¢ q) € [a,c]r x R, (2.9)
and |M/R| <1, (2.10)

then the BVP (2.1), (2.2) has at least one solution.

Proof. By Lemma 2.1, we want to show that there exists at least one solution to (2.4),
which is equivalent to showing that (2.1), (2.2) has at least one solution. To do this, we
use the Nonlinear Alternative.

Consider the mafy’ : C([a, o(c)|r; R") — C([a,o(c)|r; R™) defined by

o(c) t
Ta(t) = —(M + R)lR/ F(s,2(s)) As + / F(s,2(s)) As, ¥t € [a,0(c)]r.
Thus, our problem is reduced to proving the existence of at least sneh that
x="Tux. (2.11)
With this in mind, consider the family of equations associated with (2.11) given by

=Nz, XeJ0,1]. (2.12)
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We show that
x# Nlx, x€dBp, A€|0,1], (2.13)

for some suitable balBp C C([a, o(c)|r; R™) with radiusP > 0. Let
Br = {o € Claoe ) | max (o)l < P},
P=[14|M+R)"'R|] K(o(c) —a)+ 1.
Letz be a solution to (2.12) and see that, by Lemma 2.must also be a solution to
= \f(t,x), te€la,dr, A€ 0,1], (2.14)
Mz(a) + Rz(o(c)) = 0. (2.15)

Considerr(t) := ||x(t)||* for all t € [a,o(c)]r. By the product rule [2, Theorem 1.20
(ii)] and Theorem 1.6 (iv) we have

r2(t) = 2(z(t), 22(1)) + u(t) 2> @), t € [a,d]r,
= 2(z(t), Af(t, 2(t))) + () [Af(E, 2 (1))
> 2(x(t), Af (2, x(1))). (2.16)

From (2.16) and (2.9) obtain

INFt, Q) < 2a{g, Af(t,q)) + AK
< ar®(t) + K, (2.17)

Also, (2.10) implies
r(o(c)) < r(a) (2.18)

since (2.2) gives

[z(a (DIl < [M/R] [|z(a)l] < [lz(a)]]
Let H := 1+ |(M + R)"'R|. We show thai|\Tz| < P for all ||z|| < P and thus
(2.13) will hold. With this in mind, consider

o(c) t
|IANTx(t)]| = H—(M+ R)_IR/ Af(s,x(s)) As +/ M(s,z(s)) As

a

o(c)
< / IAf(s,2(s)] As
<H/ [arA } As, from (2.17)

[a(r(a(c)) —r(a)) + K(o(c) — a)]
<H [K(J(c) —a)], from (2.18)
<P
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and thusT" : Bp — C([a, o(c); R") satisfies (2.13).

The operatofl’ : Bp — C([a,o(c);R™) is compact by the Arzela—Ascoli theorem
(because it is a completely continuous map restricted to a closed ball).

The Nonlinear Alternative ensures the existence of at least one solutiBp o
(2.4) and hence to (2.1), (2.2). [ |

If M =1 = N, then the boundary conditions (2.2) become the so-called anti-
periodic boundary conditions
z(a) = —z(o(c)) (2.19)

and the following corollary to Theorem 2.2 easily follows.

Corollary 2.3. Let f : [a,c]Jr x R"™ — R" be continuous. If there exist non-negative
constantsy and K such that (2.9) holds, then the anti-periodic BVP (2.1), (2.19) has at
least one solution.

Proof. Itis easy to see that fa¥/ = 1 = R, all of the conditions of Theorem 2.2 hold.
Thus the result follows from Theorem 2.2. [ |

Now consider (2.1), (2.2) witm = 1. For this case the following corollary to
Theorem 2.2 is obtained.

Corollary 2.4. Suppose (2.3) holds and lét: [a, ¢c]r x R — R be continuous. If there
exist non-negative constanisand K such that

£t )| <2aqf(t,q) + K, V(tq) € [a,c]r x R, (2.20)
and |M/R| <1, (2.21)

then, forn = 1, the BVP (2.1), (2.2) has at least one solution.

Proof. Itis easy to see that for = 1: (2.9) becomes (2.20); and the result follows from
Theorem 2.2. [ |

3. Existence for the Periodic Case

This section considers the existence of solutions to the first-order system of periodic
BVPs

&+ b(t)w

z(a

g(t.x), té€la,cn, (3.1)
z(o(c)), (3.2)

whereg : [a, ¢t x R" — R"™ andb : [a, c|r — R are both continuous functions, with
having no zeros ofu, c|r.
Also considered herein, is the existence of solutions to the first-order system

& = f(t,x), t€[a,dr, (3.3)
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subject to (3.2), wheré : [a, c|r x R" — R™ is a continuous function.
We need a few more definitions to assist with our investigation. The following gives
a generalized idea of continuity on time scales.

Definition 3.1. Assumek : T — R. Define and denoté € C,,(T;R) as right-dense
continuous (rd-continuous) ift is continuous at every right-dense point T; and
lim k(s) exists and is finite at every left-dense pairgt T.

s—1~

Now define the so-called set of regressive functigashy
R ={p € Cq(T;R) andl + p(t)u(t) # 0 onT}.

The methods in this section rely on a generalized exponential fungtiart,) on a
time scaleT. Forp € R, we define (see [2, Theorem 2.35]) the exponential function
e,(+, to) on the time scal& as the unique solution to the IVP

™ =p(t)z, x(te) = xo.
If p € R, thene,(-,t,) has no zeros.
More explicitly, the exponential functios, (-, ¢o) is given by

t
exp (/ p(s)As) , forte T, u=0,
to
€p(t, tg) =
exp /t Log(l + H(S)p(s))As forteT, pu>0
to u(t) ’ 7 ’

where Log is the principal logarithm function.
Throughout this section assume

—beR, and e_y(o(c),a) # 1. (3.4)

Lemma 3.2. Let (3.4) hold. The BVP (3.1), (3.2) is equivalent to the integral equation

_ 1 7 g(s, x(s)) " og(s,x(s))
x(t) = e_p(t,a) [1 e (0(0.a) /a e o(s).a) s),a)AS +/a —e_b(a(s),a)AS]
(3.5)

fort € [a,o(c)]r.

Proof. Let z be a solution to (3.1), (3.2). By the quotient rule [2, Theorem 1.20 (v)],
consider

z(t) 1% a®@) +bt)z(t) gt x(t)) o
L_b<t’ a)} —e(o(t),a)  ey(o(t),a)’ t € la,clr,
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and hence integrating the above[ant]|y obtain

z(t) = e_p(t, a) {x(a) + /at g(s,—x(s))AS} . t€la,o(c)]r. (3.6)

e_p(o(s),a)

Using (3.2) and (3.6), obtain

2(a) = 2(o(c)) = ep(0(c), a)

and a rearrangement leads to

_ 1 7 g(s,2(s))
z(a) = = e(0(d).a) /a . As. (3.7)

So by substituting (3.7) into (3.6), the result follows.
If zis a solution to (3.5), them satisfies (3.1), (3.2), which may be verified by direct
computation. [ |

The following is the main result of this section.

Theorem 3.3. Let (3.4) hold andy : [a,c|r x R* — R" be continuous. If there exist
non-negative constantsand K such that

Ag(t, @)l

t
le-slo(t).a)] = [2(q, Ag(t, q) = b(t))] + K,

V(tv q, /\) S [CL, C]T X R™ x [07 1]’ (38)
then the BVP (3.1), (3.2) has at least one solution.

Proof. From Lemma 3.2 we see that the BVP (3.1), (3.2) is equivalent to the integral
equation (3.5).
Define the maf : C([a, o(c)]; R™) — C([a, o(c)|T; R™) by

a(c) s, x(s tog(s,xz(s
Tlx@):e_b(t,a)[ TRV = WY

1 —e_y p(o(s),a

fort € [a,o(c)]r.
Thus, our problem is reduced to proving the existence of at least sneh that

x="T. (3.9)
With this in mind, it is sufficient to show that

ATz #x, x€0dBp, Ae0,1], (3.10)
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for some suitable balBp, C C([a,o(c)]r; R"™) with radiusP;, > 0. Let

Bp, = {x € C(la,o(c)]m; R") | max ||z(t)| < Pl} :

tea,o(c)]T

1
P = sup {|e_b(t,a)| ( + 1)] K+ 1.
t€la,o(c)lr 11— ey(o(c),a)l

The rest of the proof follows similar lines to the proof of Theorem 2.2 and so is only

briefly sketched. Let be a solution to\T}x = x. Considerr(t) := |z(¢)||* for all
t € [a,0(c)]r. By the product rule [2, Theorem 1.20 (iii)] we have
r2(t) = 2{x(t), 22(0)) + u@®) 22O, t € [a,dr,
= 2(x(t), Ag(t, x(t)) — b(t)x(t)) + u(t) | Ag(t, (1)) — b(t)x (1)
> 2(a(t), Ag(t, x(t)) — b(t)(1)). (3.11)
Let .
H(t) := {|e_b(t,a)| (’1 e (o (0. a)] + 1)] , te€la,o(c)]r.
Now, for eacht € [a, o(c)]r, consider
AT 2(t)]|
o " g (s, 2(5))] ' [Ags.a(s)
= et [u ) et L e

7 | Ag(s, z(s))l
<mio [ s
o(c)
< Hl(t)/ 2af(x(s), Ag(s,z(s)) — b(t)x(s)) + K| As

o(c)
< Hl(t)/ [om"A(s) —l—K} As
— Hy(t) [a(||z((c)])? = 2(a)]?) + K]
= H\(t)K
< P1

and so (3.10) holds. The result now follows from the Nonlinear Alternative. H

The following two corollaries give less technical conditions implying (3.8) which
are easy to verify in practice.

Corollary 3.4. Let (3.4) hold withb < 0 and letg : [a, c|r x R" — R" be continuous.
If there exist non-negative constant@nd K such that

’eHg&f)_NL)‘ < 20(q.9(t,0) + K. ¥(t.q) € la.dr xR, (3.12)
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then the BVP (3.1), (3.2) has at least one solution.

Proof. It is not difficult to show that if (3.12) holds, then, singe< 0, (3.8) must also
hold and the result follows from Theorem 3.3. [ |

Corollary 3.5. Let (3.4) hold and ley : [a,c]r x R® — R" be continuous. Ify is
bounded ora, c|r x R", then the BVP (3.1), (3.2) has at least one solution.

Proof. Sinceg is bounded ora, c|r x R™, there exists a non-negative constarguch
that

sup  |lg(t, q)|| < L.
(t,q)€la,c]TxR™

Thus, (3.8) will hold for the choices = 0 and

K = sup l|e_p(o(t),a)|L.

t€la,clr
The result then follows from Theorem 3.3. [ |

Now consider (3.1), (3.2) witm = 1. For this case, the following corollary to
Theorem 3.3 is obtained.

Corollary 3.6. Let g be a continuous, scalar-valued function and let (3.4) hold. If there
exist non-negative constantsand K such that

[A\g(t,q)|
ey (o(t), a)|

then, forn = 1, the BVP (3.1), (3.2) has at least one solution.

< 2algAg(t,q) — b(t)*] + K, Y(t,q,)\) € [a,cr x R x [0,1], (3.13)

Proof. Itis easy to see that for = 1: (3.8) becomes (3.13); and the result follows from
Theorem 3.3. [ |

Attention is now turned to (3.3), (3.2). As it stands, the BVP (3.3), (3.2) is not
guaranteed to be invertible. That is, we may be unable to reformulate it as an equivalent
delta integral equation. However, the BVP

e —x = f(t,x) —x, tEla,dr, (3.14)
z(a) = z(o(c)), (3.15)

is invertible since Lemma 3.2 holds for the special cases—1 andg(t,p) = f(t,p) —
p. We will use this to now formulate some existence theorems for (3.3), (3.2).

Theorem 3.7. Let f : [a,c|r x R™ — R" be continuous and let (3.4) hold for= —1.
If there exist non-negative constant@nd K such that

1 f(t.q) — 4l

e 1(c(0), a) < 2alq, f(t,q)) + K, Y(t,q) € [a,c]r x R", (3.16)
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then the BVP (3.3), (3.2) has at least one solution.
Proof. Consider the BVP (3.3), (3.2) rewritten as
® —x = f(t,x) —x, t€ladr, (3.17)
z(a) = z(o(c)). (3.18)

The BVP (3.17), (3.18) is in the form (3.1), (3.2) with= —1 andg(t,p) = f(t,p) — p.
It is not difficult to show that (3.8) reduces to (3.16) for these special cases. Hence the
result follows from Theorem 3.3. [

Corollary 3.8. Let f : [a, c|r x R" — R"™ be continuous and let (3.4) hold for= —1.
If there exist non-negative constant@&nd K such that

1/, q) — 4l
le1(o(t), a)
then the BVP (3.3), (3.2) has at least one solution.

<2a(q, f(t,q)) + K, Y(t,q) € [a,c]r x R", (3.19)

Proof. The result follows from Corollary 3.8 with= —1, ¢(t,q) = f(t,q) — ¢. [ |

Corollary 3.9. Let f : [a, c]r x R" — R" be continuous. Iff (¢, ¢) — ¢ is bounded for
(t,q) € [a,c]r x R", then the BVP (3.3), (3.2) has at least one solution.

Proof. This is a special case of Corollary 3.9 with= —1, ¢(t,q) = f(¢,q) — q. [

4. More on Existence for the Periodic Case

This section considers the existence of solutions to the first-order system of periodic
BVPs

™ +b(t)a” = g(t,2%), t € la,c, (4.1)

z(a) = z(o(c)), (4.2)
whereg : [a, c]t x R" — R" andb : [a, c|r — R are both continuous functions, with
having no zeros ofu, c|r andz? (t) := z(o(t)).

The reader may wonder why appears in (4.1). There are two reasons: firstly, the
theory developed in this section is, in general, inapplicable to (3.1); and secondly, by
studying (4.1), advancement in the theory of

¥ +b(t)r=g(t,x), tela,c, (4.3)

z(a) = x(c). (4.4)

is still attainable (by takin@ = R).
Throughout this section assume

beR, and ey(o(c),a)# 1. (4.5)
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Lemma 4.1. Let (4.5) hold. The BVP (4.1), (4.2) is equivalent to the integral equation

1— eb(a

o(c)
x(t) = ! [ 1(0),a)/ g(s,27(s))ep(s,a)As

+/ g(s,27(s))ep(s, a)As (4.6)

fort € [a,o(c)]r.
Proof. Let x be a solution to (3.1), (3.2). By the product rule, consider
[2(t)ey(t, a)] = [22(t) + b(t)z" (t)]es(t, a) = g(t,z(t))es(t, a), t € [a,d]r.

Integrating the above ofa, t]r and then using the boundary conditions, the result fol-
lows in a similar way to the proof of Lemma 3.2.

If x is a solution to (4.6), then satisfies (4.1), (4.2), which may be verified by direct
computation. [ |

The following is the main result of this section.

Theorem 4.2. Let (4.5) hold and; : [a,c]Jr x R®™ — R" be continuous. If there exist
non-negative constantsand K” such that

[Ag(t; @)es(t, a)|l < —2alq, Ag(t,q) — b(t)q) + K,
V(t,q,\) € [a,c]r x R™ x [0,1], 4.7)

then the BVP (4.1), (4.2) has at least one solution.

Proof. From Lemma 4.1 we see that the BVP (4.1), (4.2) is equivalent to the integral
equation (4.6).
Define the mafly : C([a, o(c)]; R™) — C([a, o(c)|r; R™) by

o(c)
Trx(t) = ! [ 1(0) a)/ g(s,27(s))ep(s,a)As

ep(t,a) |1 —ep(o
+/ g(s,27(s))ep(s,a)As

fort € [a,o(c)]r.
Thus, our problem is reduced to proving the existence of at least sneh that

x ="Thw. (4.8)
With this in mind, it is sufficient to show that

Moz #x, x € 0Bp,, \€][0,1], (4.9)
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for some suitable balBp, C C([a, o(c)]r; R"™) with radiusP, > 0. Let

By, = { € Ol o)) | o (0] < P2} ,

te€la,o(c)

1
P, = sup [|eb(t,a)| ( + 1)} K+ 1.
tefa,o(c)]r 11 —ep(o(c),a)l

The rest of the proof follows similar lines to the proof of Theorem 3.3 and so is only
briefly sketched. Let be a solution to\Tyz = x. Considerr(t) := ||=(t)||* for all

t € [a,0(c)]r. By the product rule [2, Theorem 1.20 (iii)] and Theorem 1.6 (vi) we
have, fora > 0,

—ar®(t) = —a [207(t), 22 (1)) — p®2> )], ¢ € [a,c]x,
> —2a(x(t), Ag(t, z°(t)) — b(t)x7 (t)). (4.10)

Let
1

Hy(t) := [|eb(t,a)| (|1—eb(a(c),a)| +1>} . tela,o()]r.

Now, for eacht € [a, o(c)]r, consider

AT ()]

< les(t, a)[

o(c)
o sl alas
+ [ gtsiaellants,a)las
o(c)
< H2(t)/ [—2a(x(s), Ag(s,x(s)) — b(t)x(s)) + K] As

o(c)
< Hg(t)/a [—ar®(s) + K] As

= Hy(t) [~a(||z(o(c)[I* = l|z(a)[*) + K]
= Hy(1)K
< P2

and so (4.9) holds. The result now follows from the Nonlinear Alternative. [ |
As a special case of Theorem 4.2, the following result appears to be new.

Corollary 4.3. Letela ™ £ 1 andy : [a, ] x R” — R" be continuous. If there exist
non-negative constanisand K such that

IAg(t, g)ela &% | < —2a(g, Ag(t, q) — b(t)q) + K,
V(t,q,\) € [a,c] x R™ x [0, 1], (4.11)
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then the BVP (4.3), (4.4) has at least one solution.

Proof. TakeT = R in Theorem 4.2. [ |

5. An Example
An example is now provided to highlight some of the theory from previous sections.
Example 5.1. Consider the scalar dynamic BVR & 1) given by
e =t* 4+ 1, te[l,dr, (5.1)
z(1) = —x(o(c)), 1l,ceT. (5.2)
The claim is that (5.1), (5.2) has at least one solution for arbitfary

Proof. Let f(t,q) = t¢® + 1. It needs to be shown that (2.20) holds for non-negative
constantsy and K.

First note thatf(t,q)| < cl¢®| + 1 for (t,q) € [1,c]r x R. Also note that for
(t,q) € [1,c]r x R

c(¢* +q+10) > c(|¢°] + 1) > cl@®| + 1> | f(t.q)|.
Hence fora and K to be chosen below

20qf(t,q) + K = 2aq(tg® + 1) + K
>2a(q* +q) + K
= ¢(¢* + q) +10c, for the choicen = ¢/2, K = 10c
> |g(t,q)|, forall(t,q) € [1,c]r xR

and thus (2.20) holds for the choices= ¢/2 and K = 10c. Thus, all of the conditions
of Corollary 2.4 hold and the BVP (5.1), (5.2) has at least one solution. [ |

To give the reader a flavour of the above result, consider (5.1), (5.2) on the time scale

T—{2—1/i ;’ilu[Q,oo):{1,;,2,...}U[2,oo).

It is not difficult, using Definition 1.2, to show that for the above time scale,
4—t
t, fort € [2,00)r.

fort € [1,2)r,
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For this time scale, let = 1 andc = 3. So our intervals of interest for (5.1), (5.2)
becomda, |t = [1, 3]t = [a, o(c)]r. Note that by using Theorem 1.6 we obtain

z(o(t)) — (t)
S T —— fort € [1,2)r,

2 (t), fort € [2,00)r.

For this special time scale, (5.1) and (5.2) have at least one solution.
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