
International Journal of Difference Equations.
ISSN 0973-6069 Volume 1 Number 1 (2006), pp. 1–17
c© Research India Publications
http://www.ripublication.com/ijde.htm

Existence of Solutions to First-Order Dynamic
Boundary Value Problems∗

Qiuyi Dai ∗ and Christopher C. Tisdell∗∗

∗Department of Mathematics, Hunan Normal University,
Changsha Hunan 410081, P R China

E-mail: daiqiuyi@yahoo.com.cn
∗∗School of Mathematics and Statistics, The University of New South Wales,

Sydney NSW 2052, Australia
E-mail: cct@maths.unsw.edu.au

Abstract

This article investigates the existence of solutions to boundary value problems
(BVPs) involving systems of first-order dynamic equations on time scales subject
to two-point boundary conditions. The methods involve novel dynamic inequali-
ties and fixed-point theory to yield new theorems guaranteeing the existence of at
least one solution.
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1. Introduction

This paper considers the existence of solutions to the first-order dynamic equation of
the type

x∆ + b(t)x = h(t, x), t ∈ [a, c]T := [a, c] ∩ T, (1.1)

subject to the boundary conditions

G(x(a), x(σ(c))) = 0, a, c ∈ T, (1.2)
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whereh : [a, c]T × Rn → Rn is a continuous, nonlinear function;t is from a so-
called “time scale”T (which is a nonempty closed subset ofR); x∆ is the generalized
derivative ofx; the functionb : [a, c]T → R; a < c are given constants inT; andG
is some known function describing a linear set of boundary conditions. Equation (1.1)
subject to (1.2) is known as a dynamic boundary value problem (BVP) on time scales.

If T = R, thenx∆ = x′ and (1.1), (1.2) become the following BVP for ordinary
differential equations

x′ + b(t)x = h(t, x), t ∈ [a, c], (1.3)

G(x(a), x(c)) = 0, (1.4)

If T = Z, thenx∆ = ∆x and (1.1), (1.2) become the following BVP for difference
equations

∆x + b(t)x = h(t, x), t ∈ {a, a + 1, . . . , c}, (1.5)

G(x(a), x(c + 1)) = 0, a, c ∈ Z. (1.6)

There are many more time scales than justT = R andT = Z and hence many more
dynamic equations.

The field of dynamic equations on time scales provides a natural framework for:

1. establishing new insight into the theories of non-classical difference equations;

2. forming novel knowledge about “differential-difference” equations;

3. advancing, in their own right, each of the theories of differential equations and
(classical) difference equations.

In cases 1 and 2, interested researchers tend to analyze known results for differen-
tial equations and/or (classical) difference equations and then extend these ideas to
the more general time scale setting. Above, “non-classical” difference equations in-
clude, for example, the rapidly developingq-difference equations [11], used in physics.
“Differential-difference” equations feature both differential equations and difference
equations. These type of equations appear in models where time flows continuously
and discretely at different periods, see Example 5.1.

In situation 3, researchers desire to formulate new results in the general time scale
setting, with particular significance being found when special cases of the new results
are novel, even for the differential or difference equation case.

Motivated by the above, and also by [17, 18], this article investigates the existence
of solutions to systems of dynamic equations in the general time scale setting. Some
sufficient conditions, in terms of dynamic inequalities onh, are presented that ensure
the existence of at least one solution to the dynamic BVP under consideration. The main
tools involve fixed-point methods and the Nonlinear Alternative.

This article advances all three situations raised above. In Sections 2 and 3, the
interest is in the first two situations. In Section 4, the interest lies in the third situation.
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To understand the notation used above, some preliminary definitions are needed.

Definition 1.1. A time scaleT is a nonempty closed subset of the real numbersR.

Since a time scale may or may not be connected, the concept of the jump operator
is useful, and we will use it to define the generalized derivativex∆ of the functionx.

Definition 1.2. The forward (backward) jump operatorσ(t) at t for t < supT (respec-
tively ρ(t) at t for t > inf T) is given by

σ(t) = inf{τ > t : τ ∈ T}, (ρ(t) = sup{τ < t : τ ∈ T}) for all t ∈ T.

Define the graininess functionµ : T→ [0,∞) asµ(t) = σ(t)− t.

Throughout this work the assumption is made thatT has the topology that it inherits
from the standard topology on the real numbersR.

Definition 1.3. The jump operatorsσ andρ allow the classification of points in a time
scale in the following way: Ifσ(t) > t, then the pointt is called right-scattered; while
if ρ(t) < t, thent is termed left-scattered. Ift < supT andσ(t) = t, then the pointt is
called right-dense; while ift > inf T andρ(t) = t, then we sayt is left-dense.

If T has a left-scattered maximum valuem, then we defineTκ = T − {m}. Other-
wiseTκ = T.

Definition 1.4. Fix t ∈ Tκ and letx : T → Rn. Definex∆(t) to be the vector (if it
exists) with the property that givenε > 0 there is a neighbourhoodU of t with

|[xi(σ(t))−xi(s)]−x∆
i (t)[σ(t)−s]| ≤ ε|σ(t)−s| for all s ∈ U and eachi = 1, . . . , n.

Call x∆(t) the delta derivative ofx(t) and say thatx is delta differentiable.

Definition 1.5. If K∆(t) = k(t), then define the delta integral by

∫ t

a

k(s)∆s = K(t)−K(a).

If T = R, then
∫ t

a

k(s)∆s =

∫ t

a

k(s)ds, while if T = Z, then
∫ t

a

k(s)∆s =
t−1∑
a

k(s).

Once again, there are many more time scales than justR andZ and hence there are
many more delta integrals. For a more general definition of the delta integral see [2].

Theorem 1.6. [9] Assume thatk : T→ Rn and lett ∈ Tκ.

(i) If k is delta differentiable att, thenk is continuous att.
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(ii) If k is continuous att andt is right-scattered, thenk is delta differentiable att
with

k∆(t) =
k(σ(t))− k(t)

σ(t)− t
.

(iii) If k is delta differentiable andt is right-dense, then

k∆(t) = lim
s→t

k(t)− k(s)

t− s
.

(iv) If k is delta differentiable att, thenk(σ(t)) = k(t) + µ(t)k∆(t).

The relatively young theory of time scales dates back to Hilger [9]. The monographs
[2] and [12] also provide an excellent introduction. For more recent developments in
dynamic equations on time scales, the reader is referred to [1,3,5–8,10,14,15,19,20].

A solution to (1.1), (1.2) is a continuous functionx : [a, σ(c)]T → Rn (denoted by
x ∈ C([a, σ(c)]T;Rn)) that satisfies (1.1) and (1.2).

In what follows, if y, z ∈ Rn, then〈y, z〉 denotes the usual inner product and‖z‖
denotes the Euclidean norm ofz onRn.

2. Existence for the Non-Periodic Case

This section considers the existence of solutions to the first-order dynamic equation

x∆ = f(t, x), t ∈ [a, c]T, (2.1)

subject to the boundary conditions

Mx(a) + Rx(σ(c)) = 0, a, c ∈ T, (2.2)

wheref : [a, c]T × Rn → Rn is a continuous, nonlinear function;a < c are given
constants inT; andM , R are given constants inR.

Throughout this section, assume

M + R 6= 0. (2.3)

Lemma 2.1. Suppose (2.3) holds. The BVP (2.1), (2.2) is equivalent to the integral
equation

x(t) =

∫ t

a

f(s, x(s)) ∆s− (M + R)−1R

∫ σ(c)

a

f(s, x(s)) ∆s, t ∈ [a, c]T. (2.4)

Proof. Let x : [a, σ(c)]T → Rn satisfy (2.1) and (2.2). It is easy to see that

x(t) = x(a) +

∫ t

a

f(s, x(s)) ∆s, t ∈ [a, σ(c)]T, (2.5)
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and

x(σ(c)) = x(a) +

∫ σ(c)

a

f(s, x(s)) ∆s.

So (2.2) gives

0 = Mx(a) + R

(
x(a) +

∫ σ(c)

a

f(s, x(s)) ∆s

)
(2.6)

and rearranging (2.6) yields

x(a) = −(M + R)−1R

∫ σ(c)

a

f(s, x(s)) ∆s. (2.7)

So substituting (2.7) into (2.5) gives, fort ∈ [a, σ(c)]T,

x(t) = −(M + R)−1R

∫ σ(c)

a

f(s, x(s)) ∆s +

∫ t

a

f(s, x(s)) ∆s. (2.8)

If x is a solution to (2.4), then is it easy to show that (2.1) and (2.2) hold by direct
calculation. ¥

The following is the main result of this section.

Theorem 2.2. Suppose (2.3) holds andf : [a, c]T × Rn → Rn is continuous. If there
exist non-negative constantsα andK such that

‖f(t, q)‖ ≤ 2α〈q, f(t, q)〉+ K, ∀(t, q) ∈ [a, c]T × Rn, (2.9)

and |M/R| ≤ 1, (2.10)

then the BVP (2.1), (2.2) has at least one solution.

Proof. By Lemma 2.1, we want to show that there exists at least one solution to (2.4),
which is equivalent to showing that (2.1), (2.2) has at least one solution. To do this, we
use the Nonlinear Alternative.

Consider the mapT : C([a, σ(c)]T;Rn) → C([a, σ(c)]T;Rn) defined by

Tx(t) = −(M + R)−1R

∫ σ(c)

a

f(s, x(s)) ∆s +

∫ t

a

f(s, x(s)) ∆s, ∀t ∈ [a, σ(c)]T.

Thus, our problem is reduced to proving the existence of at least onex such that

x = Tx. (2.11)

With this in mind, consider the family of equations associated with (2.11) given by

x = λTx, λ ∈ [0, 1]. (2.12)
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We show that
x 6= λTx, x ∈ ∂BP , λ ∈ [0, 1], (2.13)

for some suitable ballBP ⊂ C([a, σ(c)]T;Rn) with radiusP > 0. Let

BP =

{
x ∈ C([a, σ(c)]T;Rn) | max

t∈[a,σ(c)]T
‖x(t)‖ < P

}
,

P =
[
1 + |(M + R)−1R|] K(σ(c)− a) + 1.

Let x be a solution to (2.12) and see that, by Lemma 2.1,x must also be a solution to

x∆ = λf(t, x), t ∈ [a, c]T, λ ∈ [0, 1], (2.14)

Mx(a) + Rx(σ(c)) = 0. (2.15)

Considerr(t) := ‖x(t)‖2 for all t ∈ [a, σ(c)]T. By the product rule [2, Theorem 1.20
(iii)] and Theorem 1.6 (iv) we have

r∆(t) = 2〈x(t), x∆(t)〉+ µ(t)‖x∆(t)‖2, t ∈ [a, c]T,

= 2〈x(t), λf(t, x(t))〉+ µ(t)‖λf(t, x(t))‖2

≥ 2〈x(t), λf(t, x(t))〉. (2.16)

From (2.16) and (2.9) obtain

‖λf(t, q)‖ ≤ 2α〈q, λf(t, q)〉+ λK

≤ αr∆(t) + K, (2.17)

Also, (2.10) implies
r(σ(c)) ≤ r(a) (2.18)

since (2.2) gives
‖x(σ(c))‖ ≤ |M/R| ‖x(a)‖ ≤ ‖x(a)‖.

Let H := 1 + |(M + R)−1R|. We show that‖λTx‖ < P for all ‖x‖ ≤ P and thus
(2.13) will hold. With this in mind, consider

‖λTx(t)‖ =

∥∥∥∥∥−(M + R)−1R

∫ σ(c)

a

λf(s, x(s)) ∆s +

∫ t

a

λf(s, x(s)) ∆s

∥∥∥∥∥

≤ H

∫ σ(c)

a

‖λf(s, x(s))‖ ∆s

≤ H

∫ σ(c)

a

[
αr∆(s) + K

]
∆s, from (2.17)

= H [α(r(σ(c))− r(a)) + K(σ(c)− a)]

≤ H [K(σ(c)− a)] , from (2.18)

< P
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and thusT : BP → C([a, σ(c);Rn) satisfies (2.13).
The operatorT : BP → C([a, σ(c);Rn) is compact by the Arzela–Ascoli theorem

(because it is a completely continuous map restricted to a closed ball).
The Nonlinear Alternative ensures the existence of at least one solution inBP to

(2.4) and hence to (2.1), (2.2). ¥

If M = 1 = N , then the boundary conditions (2.2) become the so-called anti-
periodic boundary conditions

x(a) = −x(σ(c)) (2.19)

and the following corollary to Theorem 2.2 easily follows.

Corollary 2.3. Let f : [a, c]T × Rn → Rn be continuous. If there exist non-negative
constantsα andK such that (2.9) holds, then the anti-periodic BVP (2.1), (2.19) has at
least one solution.

Proof. It is easy to see that forM = 1 = R, all of the conditions of Theorem 2.2 hold.
Thus the result follows from Theorem 2.2. ¥

Now consider (2.1), (2.2) withn = 1. For this case the following corollary to
Theorem 2.2 is obtained.

Corollary 2.4. Suppose (2.3) holds and letf : [a, c]T ×R→ R be continuous. If there
exist non-negative constantsα andK such that

|f(t, q)| ≤ 2αqf(t, q) + K, ∀(t, q) ∈ [a, c]T × R, (2.20)

and |M/R| ≤ 1, (2.21)

then, forn = 1, the BVP (2.1), (2.2) has at least one solution.

Proof. It is easy to see that forn = 1: (2.9) becomes (2.20); and the result follows from
Theorem 2.2. ¥

3. Existence for the Periodic Case

This section considers the existence of solutions to the first-order system of periodic
BVPs

x∆ + b(t)x = g(t, x), t ∈ [a, c]T, (3.1)

x(a) = x(σ(c)), (3.2)

whereg : [a, c]T × Rn → Rn andb : [a, c]T → R are both continuous functions, withb
having no zeros on[a, c]T.

Also considered herein, is the existence of solutions to the first-order system

x∆ = f(t, x), t ∈ [a, c]T, (3.3)
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subject to (3.2), wheref : [a, c]T × Rn → Rn is a continuous function.
We need a few more definitions to assist with our investigation. The following gives

a generalized idea of continuity on time scales.

Definition 3.1. Assumek : T → R. Define and denotek ∈ Crd(T;R) as right-dense
continuous (rd-continuous) if:k is continuous at every right-dense pointt ∈ T; and
lim

s→t−
k(s) exists and is finite at every left-dense pointt ∈ T.

Now define the so-called set of regressive functions,R, by

R = {p ∈ Crd(T;R) and1 + p(t)µ(t) 6= 0 onT}.

The methods in this section rely on a generalized exponential functionep(·, t0) on a
time scaleT. For p ∈ R, we define (see [2, Theorem 2.35]) the exponential function
ep(·, t0) on the time scaleT as the unique solution to the IVP

x∆ = p(t)x, x(t0) = x0.

If p ∈ R, thenep(·, t0) has no zeros.
More explicitly, the exponential functionep(·, t0) is given by

ep(t, t0) =





exp

(∫ t

t0

p(s)∆s

)
, for t ∈ T, µ = 0,

exp

(∫ t

t0

Log(1 + µ(s)p(s))

µ(t)
∆s

)
, for t ∈ T, µ > 0,

where Log is the principal logarithm function.
Throughout this section assume

−b ∈ R, and e−b(σ(c), a) 6= 1. (3.4)

Lemma 3.2. Let (3.4) hold. The BVP (3.1), (3.2) is equivalent to the integral equation

x(t) = e−b(t, a)

[
1

1− e−b(σ(c), a)

∫ σ(c)

a

g(s, x(s))

e−b(σ(s), a)
∆s +

∫ t

a

g(s, x(s))

e−b(σ(s), a)
∆s

]

(3.5)
for t ∈ [a, σ(c)]T.

Proof. Let x be a solution to (3.1), (3.2). By the quotient rule [2, Theorem 1.20 (v)],
consider

[
x(t)

e−b(t, a)

]∆

=
x∆(t) + b(t)x(t)

e−b(σ(t), a)
=

g(t, x(t))

e−b(σ(t), a)
, t ∈ [a, c]T,
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and hence integrating the above on[a, t]T obtain

x(t) = e−b(t, a)

[
x(a) +

∫ t

a

g(s, x(s))

e−b(σ(s), a)
∆s

]
, t ∈ [a, σ(c)]T. (3.6)

Using (3.2) and (3.6), obtain

x(a) = x(σ(c)) = e−b(σ(c), a)

[
x(a) +

∫ σ(c)

a

g(s, x(s))

e−b(σ(s), a)
∆s

]

and a rearrangement leads to

x(a) =
1

1− e−b(σ(c), a)

∫ σ(c)

a

g(s, x(s))

e−b(σ(s), a)
∆s. (3.7)

So by substituting (3.7) into (3.6), the result follows.
If x is a solution to (3.5), thenx satisfies (3.1), (3.2), which may be verified by direct

computation. ¥

The following is the main result of this section.

Theorem 3.3. Let (3.4) hold andg : [a, c]T × Rn → Rn be continuous. If there exist
non-negative constantsα andK such that

‖λg(t, q)‖
|e−b(σ(t), a)| ≤ α [2〈q, λg(t, q)− b(t)q〉] + K,

∀(t, q, λ) ∈ [a, c]T × Rn × [0, 1], (3.8)

then the BVP (3.1), (3.2) has at least one solution.

Proof. From Lemma 3.2 we see that the BVP (3.1), (3.2) is equivalent to the integral
equation (3.5).

Define the mapT1 : C([a, σ(c)]T;Rn) → C([a, σ(c)]T;Rn) by

T1x(t) = e−b(t, a)

[
1

1− e−b(σ(c), a)

∫ σ(c)

a

g(s, x(s))

e−b(σ(s), a)
∆s +

∫ t

a

g(s, x(s))

e−b(σ(s), a)
∆s

]

for t ∈ [a, σ(c)]T.
Thus, our problem is reduced to proving the existence of at least onex such that

x = T1x. (3.9)

With this in mind, it is sufficient to show that

λT1x 6= x, x ∈ ∂BP1 , λ ∈ [0, 1], (3.10)
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for some suitable ballBP1 ⊂ C([a, σ(c)]T;Rn) with radiusP1 > 0. Let

BP1 =

{
x ∈ C([a, σ(c)]T;Rn) | max

t∈[a,σ(c)]T
‖x(t)‖ < P1

}
,

P1 = sup
t∈[a,σ(c)]T

[
|e−b(t, a)|

(
1

|1− e−b(σ(c), a)| + 1

)]
K + 1.

The rest of the proof follows similar lines to the proof of Theorem 2.2 and so is only
briefly sketched. Letx be a solution toλT1x = x. Considerr(t) := ‖x(t)‖2 for all
t ∈ [a, σ(c)]T. By the product rule [2, Theorem 1.20 (iii)] we have

r∆(t) = 2〈x(t), x∆(t)〉+ µ(t)‖x∆(t)‖2, t ∈ [a, c]T,

= 2〈x(t), λg(t, x(t))− b(t)x(t)〉+ µ(t)‖λg(t, x(t))− b(t)x(t)‖2.

≥ 2〈x(t), λg(t, x(t))− b(t)x(t)〉. (3.11)

Let

H1(t) :=

[
|e−b(t, a)|

(
1

|1− e−b(σ(c), a)| + 1

)]
, t ∈ [a, σ(c)]T.

Now, for eacht ∈ [a, σ(c)]T, consider

‖λTx(t)‖

≤ |e−b(t, a)|
[

1

|1− e−b(σ(c), a)|
∫ σ(c)

a

‖λg(s, x(s))‖
|e−b(σ(s), a)|∆s +

∫ t

a

‖λg(s, x(s))‖
|e−b(σ(s), a)|∆s

]

≤ H1(t)

∫ σ(c)

a

‖λg(s, x(s))‖
|e−b(σ(s), a)|∆s

≤ H1(t)

∫ σ(c)

a

2α[〈x(s), λg(s, x(s))− b(t)x(s)〉+ K] ∆s

≤ H1(t)

∫ σ(c)

a

[
αr∆(s) + K

]
∆s

= H1(t)
[
α(‖x(σ(c))‖2 − ‖x(a)‖2) + K

]

= H1(t)K

< P1

and so (3.10) holds. The result now follows from the Nonlinear Alternative. ¥

The following two corollaries give less technical conditions implying (3.8) which
are easy to verify in practice.

Corollary 3.4. Let (3.4) hold withb < 0 and letg : [a, c]T × Rn → Rn be continuous.
If there exist non-negative constantsα andK such that

‖g(t, q)‖
|e−b(σ(t), a)| ≤ 2α〈q, g(t, q)〉+ K, ∀(t, q) ∈ [a, c]T × Rn, (3.12)
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then the BVP (3.1), (3.2) has at least one solution.

Proof. It is not difficult to show that if (3.12) holds, then, sinceb < 0, (3.8) must also
hold and the result follows from Theorem 3.3. ¥

Corollary 3.5. Let (3.4) hold and letg : [a, c]T × Rn → Rn be continuous. Ifg is
bounded on[a, c]T × Rn, then the BVP (3.1), (3.2) has at least one solution.

Proof. Sinceg is bounded on[a, c]T × Rn, there exists a non-negative constantL such
that

sup
(t,q)∈[a,c]T×Rn

‖g(t, q)‖ ≤ L.

Thus, (3.8) will hold for the choicesα = 0 and

K = sup
t∈[a,c]T

|e−b(σ(t), a)|L.

The result then follows from Theorem 3.3. ¥

Now consider (3.1), (3.2) withn = 1. For this case, the following corollary to
Theorem 3.3 is obtained.

Corollary 3.6. Let g be a continuous, scalar-valued function and let (3.4) hold. If there
exist non-negative constantsα andK such that

|λg(t, q)|
|e−b(σ(t), a)| ≤ 2α[qλg(t, q)− b(t)q2] + K, ∀(t, q, λ) ∈ [a, c]T ×R× [0, 1], (3.13)

then, forn = 1, the BVP (3.1), (3.2) has at least one solution.

Proof. It is easy to see that forn = 1: (3.8) becomes (3.13); and the result follows from
Theorem 3.3. ¥

Attention is now turned to (3.3), (3.2). As it stands, the BVP (3.3), (3.2) is not
guaranteed to be invertible. That is, we may be unable to reformulate it as an equivalent
delta integral equation. However, the BVP

x∆ − x = f(t, x)− x, t ∈ [a, c]T, (3.14)

x(a) = x(σ(c)), (3.15)

is invertible since Lemma 3.2 holds for the special casesb = −1 andg(t, p) = f(t, p)−
p. We will use this to now formulate some existence theorems for (3.3), (3.2).

Theorem 3.7. Let f : [a, c]T × Rn → Rn be continuous and let (3.4) hold forb = −1.
If there exist non-negative constantsα andK such that

‖f(t, q)− q‖
|e−1(σ(t), a)| ≤ 2α〈q, f(t, q)〉+ K, ∀(t, q) ∈ [a, c]T × Rn, (3.16)
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then the BVP (3.3), (3.2) has at least one solution.

Proof. Consider the BVP (3.3), (3.2) rewritten as

x∆ − x = f(t, x)− x, t ∈ [a, c]T, (3.17)

x(a) = x(σ(c)). (3.18)

The BVP (3.17), (3.18) is in the form (3.1), (3.2) withb = −1 andg(t, p) = f(t, p)− p.
It is not difficult to show that (3.8) reduces to (3.16) for these special cases. Hence the
result follows from Theorem 3.3. ¥

Corollary 3.8. Let f : [a, c]T × Rn → Rn be continuous and let (3.4) hold forb = −1.
If there exist non-negative constantsα andK such that

‖f(t, q)− q‖
|e−1(σ(t), a)| ≤ 2α〈q, f(t, q)〉+ K, ∀(t, q) ∈ [a, c]T × Rn, (3.19)

then the BVP (3.3), (3.2) has at least one solution.

Proof. The result follows from Corollary 3.8 withb = −1, g(t, q) = f(t, q)− q. ¥

Corollary 3.9. Let f : [a, c]T × Rn → Rn be continuous. Iff(t, q)− q is bounded for
(t, q) ∈ [a, c]T × Rn, then the BVP (3.3), (3.2) has at least one solution.

Proof. This is a special case of Corollary 3.9 withb = −1, g(t, q) = f(t, q)− q. ¥

4. More on Existence for the Periodic Case

This section considers the existence of solutions to the first-order system of periodic
BVPs

x∆ + b(t)xσ = g(t, xσ), t ∈ [a, c]T, (4.1)

x(a) = x(σ(c)), (4.2)

whereg : [a, c]T × Rn → Rn andb : [a, c]T → R are both continuous functions, withb
having no zeros on[a, c]T andxσ(t) := x(σ(t)).

The reader may wonder whyxσ appears in (4.1). There are two reasons: firstly, the
theory developed in this section is, in general, inapplicable to (3.1); and secondly, by
studying (4.1), advancement in the theory of

x′ + b(t)x = g(t, x), t ∈ [a, c], (4.3)

x(a) = x(c). (4.4)

is still attainable (by takingT = R).
Throughout this section assume

b ∈ R, and eb(σ(c), a) 6= 1. (4.5)
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Lemma 4.1. Let (4.5) hold. The BVP (4.1), (4.2) is equivalent to the integral equation

x(t) =
1

eb(t, a)

[
1

1− eb(σ(c), a)

∫ σ(c)

a

g(s, xσ(s))eb(s, a)∆s

+

∫ t

a

g(s, xσ(s))eb(s, a)∆s

]
(4.6)

for t ∈ [a, σ(c)]T.

Proof. Let x be a solution to (3.1), (3.2). By the product rule, consider

[x(t)eb(t, a)]∆ = [x∆(t) + b(t)xσ(t)]eb(t, a) = g(t, x(t))eb(t, a), t ∈ [a, c]T.

Integrating the above on[a, t]T and then using the boundary conditions, the result fol-
lows in a similar way to the proof of Lemma 3.2.

If x is a solution to (4.6), thenx satisfies (4.1), (4.2), which may be verified by direct
computation. ¥

The following is the main result of this section.

Theorem 4.2. Let (4.5) hold andg : [a, c]T × Rn → Rn be continuous. If there exist
non-negative constantsα andK such that

‖λg(t, q)eb(t, a)‖ ≤ −2α〈q, λg(t, q)− b(t)q〉+ K,

∀(t, q, λ) ∈ [a, c]T × Rn × [0, 1], (4.7)

then the BVP (4.1), (4.2) has at least one solution.

Proof. From Lemma 4.1 we see that the BVP (4.1), (4.2) is equivalent to the integral
equation (4.6).

Define the mapT2 : C([a, σ(c)]T;Rn) → C([a, σ(c)]T;Rn) by

T2x(t) =
1

eb(t, a)

[
1

1− eb(σ(c), a)

∫ σ(c)

a

g(s, xσ(s))eb(s, a)∆s

+

∫ t

a

g(s, xσ(s))eb(s, a)∆s

]

for t ∈ [a, σ(c)]T.
Thus, our problem is reduced to proving the existence of at least onex such that

x = T2x. (4.8)

With this in mind, it is sufficient to show that

λT2x 6= x, x ∈ ∂BP2 , λ ∈ [0, 1], (4.9)
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for some suitable ballBP2 ⊂ C([a, σ(c)]T;Rn) with radiusP2 > 0. Let

BP2 =

{
x ∈ C([a, σ(c)]T;Rn) | max

t∈[a,σ(c)]T
‖x(t)‖ < P2

}
,

P2 = sup
t∈[a,σ(c)]T

[
|eb(t, a)|

(
1

|1− eb(σ(c), a)| + 1

)]
K + 1.

The rest of the proof follows similar lines to the proof of Theorem 3.3 and so is only
briefly sketched. Letx be a solution toλT2x = x. Considerr(t) := ‖x(t)‖2 for all
t ∈ [a, σ(c)]T. By the product rule [2, Theorem 1.20 (iii)] and Theorem 1.6 (vi) we
have, forα ≥ 0,

−αr∆(t) = −α
[
2〈xσ(t), x∆(t)〉 − µ(t)‖x∆(t)‖2

]
, t ∈ [a, c]T,

≥ −2α〈x(t), λg(t, xσ(t))− b(t)xσ(t)〉. (4.10)

Let

H2(t) :=

[
|eb(t, a)|

(
1

|1− eb(σ(c), a)| + 1

)]
, t ∈ [a, σ(c)]T.

Now, for eacht ∈ [a, σ(c)]T, consider

‖λTx(t)‖

≤ |eb(t, a)|[ 1

|1− eb(σ(c), a)|
∫ σ(c)

a

‖λg(s, x(s))‖|eb(s, a)|∆s

+

∫ t

a

‖λg(s, x(s))‖|eb(s, a)|∆s]

≤ H2(t)

∫ σ(c)

a

[−2α〈x(s), λg(s, x(s))− b(t)x(s)〉+ K] ∆s

≤ H2(t)

∫ σ(c)

a

[−αr∆(s) + K
]

∆s

= H2(t)
[−α(‖x(σ(c))‖2 − ‖x(a)‖2) + K

]

= H2(t)K

< P2

and so (4.9) holds. The result now follows from the Nonlinear Alternative. ¥

As a special case of Theorem 4.2, the following result appears to be new.

Corollary 4.3. Let e
R c

a b(t)dt 6= 1 andg : [a, c]× Rn → Rn be continuous. If there exist
non-negative constantsα andK such that

‖λg(t, q)e
R t

a b(s)ds‖ ≤ −2α〈q, λg(t, q)− b(t)q〉+ K,

∀(t, q, λ) ∈ [a, c]× Rn × [0, 1], (4.11)
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then the BVP (4.3), (4.4) has at least one solution.

Proof. TakeT = R in Theorem 4.2. ¥

5. An Example

An example is now provided to highlight some of the theory from previous sections.

Example 5.1. Consider the scalar dynamic BVP (n = 1) given by

x∆ = tx3 + 1, t ∈ [1, c]T, (5.1)

x(1) = −x(σ(c)), 1, c ∈ T. (5.2)

The claim is that (5.1), (5.2) has at least one solution for arbitraryT.

Proof. Let f(t, q) = tq3 + 1. It needs to be shown that (2.20) holds for non-negative
constantsα andK.

First note that|f(t, q)| ≤ c|q3| + 1 for (t, q) ∈ [1, c]T × R. Also note that for
(t, q) ∈ [1, c]T × R

c(q4 + q + 10) ≥ c(|q3|+ 1) ≥ c|q3|+ 1 ≥ |f(t, q)|.

Hence forα andK to be chosen below

2αqf(t, q) + K = 2αq(tq3 + 1) + K

≥ 2α(q4 + q) + K

= c(q4 + q) + 10c, for the choiceα = c/2, K = 10c

≥ |g(t, q)|, for all (t, q) ∈ [1, c]T × R

and thus (2.20) holds for the choicesα = c/2 andK = 10c. Thus, all of the conditions
of Corollary 2.4 hold and the BVP (5.1), (5.2) has at least one solution. ¥

To give the reader a flavour of the above result, consider (5.1), (5.2) on the time scale

T := {2− 1/i}∞i=1 ∪ [2,∞) =

{
1,

3

2
,
5

3
, . . .

}
∪ [2,∞).

It is not difficult, using Definition 1.2, to show that for the above time scale,

σ(t) =





4− t

3− t
, for t ∈ [1, 2)T,

t, for t ∈ [2,∞)T.
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For this time scale, leta = 1 andc = 3. So our intervals of interest for (5.1), (5.2)
become[a, c]T = [1, 3]T = [a, σ(c)]T. Note that by using Theorem 1.6 we obtain

x∆(t) =





x(σ(t))− x(t)

σ(t)− t
, for t ∈ [1, 2)T,

x′(t), for t ∈ [2,∞)T.

For this special time scale, (5.1) and (5.2) have at least one solution.
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with applications. Birkḧauser Boston, Inc., Boston, MA, 2001.

[3] M. Bohner and C.C. Tisdell, Oscillation and nonoscillation of forced second order
dynamic equations. Pacific J. Math. (in press)

[4] F.B. Christiansen and T.M. Fenchel, Theories of Populations in Biological Com-
munities, Lecture Notes in Ecological Studies, 20, Springer-Verlag, Berlin, 1977.

[5] L. Erbe, A. Peterson, and C.C. Tisdell, Existence of solutions to second-order
BVPs on time scales,Appl. Anal., 84(10):1069–1078, 2005.

[6] Johnny Henderson, Allan Peterson, and C.C. Tisdell, On the existence and unique-
ness of solutions to boundary value problems on time scales,Adv. Difference Equ.,
2:93–109, 2004.

[7] J. Henderson and C.C. Tisdell, Topological transversality and boundary value
problems on time scales,J. Math. Anal. Appl., 289(1):110–125, 2004.

[8] J. Henderson, C.C. Tisdell, and W.K.C. Yin, Uniqueness implies existence for
three-point boundary value problems for dynamic equations,Appl. Math. Lett.,
17(12):1391–1395, 2004.

[9] S. Hilger, Analysis on Measure Chains – A Unified Approach to Continuous and
Discrete Calculus,Res. Math., 18:18–56, 1990.

[10] J. Hoffacker and C.C. Tisdell, Stability and instability for dynamic equations on
time scales,Comput. Math. Appl., 49(9-10), 1327–1334, 2005.

[11] V. Kac, and P. Cheung, Quantum calculus. Universitext. Springer-Verlag, New
York, 2002.
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