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Abstract

We investigate the Hyers—Ulam stability (HUS) of a certain first-order linear
complex constant coefficient dynamic equation on the time scale [P, 5, which has
continuous intervals of length o > 0 followed by discrete jumps of length A > 0.
In particular, we establish results in the case of this specific time scale, for co-
efficient values in the complex plane, including where the exponential function
alternates in sign. In our analysis, we employ the Lambert W function. For in-
creasing jump size h relative to o, we prove that the complex constant coefficient
undergoes a bifurcation in its parameter space. We establish interesting results for
both the delta dynamic equation and the nabla dynamic equation.

AMS Subject Classifications: 34N05, 34A30, 34D20, 39A06, 39A30, 39A45.
Keywords: Hyers—Ulam, forward difference operator, backward difference operator,
bifurcation, Lambert W function, complex eigenvalue.

1 Content Prelude

Imagine a data burst or transmission signal broadcast over a short time period, and then
repeated, or a device or system that runs continuously for a fixed time, shuts off, and
then runs again. In biology, think of an organism that lives a fixed unit of time, followed
by hibernation or dormancy, and then is active again, and so on. These scenarios may be
modeled by a specific time scale T with fixed jump size that displays both continuous

Received July 20, 2020; Accepted July 21, 2020
Communicated by Allan C. Peterson



260 Anderson, Jennissen, Montplaisir

and discrete properties, see Bohner and Peterson [8, Examples 1.38—1.40], where a time
scale is any closed subset of the real line R. In particular, let T = P, ;, for continuous
interval length o > 0 and discrete jump size A > 0, namely

[e.9]

Pon = | k(o + R), k(a + h) + o],

and consider the differential operator defined by
d
ax(t) fort € [k(a+ h),k(a+h) + a)

z(t+h) — x(t)
h

22 (t) =

fort = k(a+h) + a.

We will be investigating some stability questions for this time scale and this derivative
operator, in the Hyers-Ulam sense, defined below. Note that this problem is explored
briefly but incompletely in [2, Example 4.1]. Our aim is to give a more robust analysis
of the situation in this work.

Time scales were introduced by Hilger [12] to unify continuous and discrete anal-
ysis. Hyers—Ulam stability was initiated by Ulam [27], followed by Hyers [13] and
Rassias [25]. Some early work on differential equations and this type of stability in-
clude Miura et al. [18, 19] and Jung et al. [14-17]. Some recent papers on HUS and
difference equations or more generally time scales include Anderson [1], Anderson and
Onitsuka [2—-6], Andras et al. [7], Brzdek et al. [9], Buse et al. [10], Nam [20-22],
Onitsuka [23,24], and Shen [26].

Definition 1.1 (Hyers-Ulam Stability). We say that

w2 (1) = Ma(b), AG(C\{—%}, teT (1.1)

has Hyers—Ulam stability on T if and only if there exists a constant /' > 0 with the
following property. For arbitrary € > 0, if a function ¢ : T — C satisfies

102 (t) — Ao(t)] < e, teT, (1.2)

then there exists a solution x : T — C of (1.1) such that |¢(t) — z(t)| < Ke for all
t € T. Such a constant K is called an HUS constant for (1.1) on T.

In this work, we consider the time scale T = P, 5, and the time scale eigenvalue
problem given in (1.1). For ¢ € T, we have the forward jump operator o defined by

(t) = t fort € [k(a+ h), k(a+ h) + a),
" )t+h fort=k(a+h)+o.
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1 . . L
For A € C\ {_E }, the exponential function e, (¢, 0) is given by
ex(t,0) = (L4 h\)Pe =)t e [k(a + h), k(a+h) +a], keNy, (1.3)
which can also be written as

ex(t,0) = [(1+ h)\)e‘”}k N, t=k(a+h)+j, j€[0,al
1
Clearly, the exponential function in (1.3) is well defined for A € C\ {_E } Notice that

x(t) = moex(t,0), teT, (1.4)

is the general solution of (1.1), for the exponential function e given in (1.3). Moreover,
for given € > 0, the function

B(t) = poex(t,0) + eA(t,O)/O %As, lq(s)| < eVseT, (1.5)

where

t & s = ' Q(S> s N N .
/k(a+h) eA(U(S),O)A /k(a+h) 6)\(570>d ) t€k(a+h),k(a+h)+a]

and

/k<a+h> als) . halkla+h) — 1)
k(a+h)—h 6)\(0'(8), O) 6,\(]€(Oé + h)? 0) ’
is the solution of (1.2) by the variation of parameters formula, see Bohner and Peterson
[8, Theorem 2.77].

Throughout the paper, we will need to employ the Lambert W function, see Corless
et al. [11], which we denote by W, where W, satisfies Wz(y)eWZ(y) = y, for every
z € 7. For example, using (1.3) and ¢ = k(« + h), we have

ex(k(a + h),0) = [(1 + hA)e]*,

. o 1 .
To prevent this from vanishing, we always assume \ # 5 Moreover, we will see that

other key values for A € R include when the base (1 + h\)e® = £1. If A = 0, then
(1 4+ hA\)e** = 1, but, for A € R, we note here that for the branches = = —1,0 of the
Lambert W = W, function,

-1 1 a a o
L hA)e™ = =1 4= A = =+ Wy (= Tef ) and b > o~ 3501120,
(1+hN)e o+ Wy (—per) andh > Wole ) a
where h > 0 is the jump size, and W} is the principal branch of the Lambert W function.
1 —1.27846
In particular, if b = Y andA= = — — o~ 1 then ex(k(a+h),0) =

1y Wo(e 1) a h
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2 Hyers-Ulam Stability on P, ;,

We now give our first new results, when the eigenvalue A is a real number; in a later
section, we will consider the more general case of A € C. Moreover, we will fix o >
0 and let the jump size A > 0 range over all positive real numbers in relation to a.
Of course, one could also fix h > 0 and let « > 0 vary, as well. For the sake of
completeness, we will include the details of proofs for this specific time scale T = P, ,.
We will refer to the following constant,

Kg 2.1

L1 (LR (14 20))
D\ 1+ eo2 (14 hA) ’

throughout the remainder of this section.

1
Theorem 2.1 (Delta equation). Fix o > 0, and let A\ € R\ {_E} Also, let Kr be

given as in (2.1). We have the following cases.

(i) Suppose ) < h < ﬁel)'

1

(a) If \ € (_E’ O) U (0, 00), then (1.1) is Hyers—Ulam stable, with best HUS
constant K = —.

Al

(b) If A = 0, then (1.1) is not Hyers—Ulam stable.

1
(c) If A\ € (—oo, _E>’ then (1.1) is HUS, with best HUS constant K = K.

Wg(@fl) '

and we have the following subcases.

L1 we ),

Then, (1 + h\)e® = —lat A = -

(ii) Suppose h =

-1
(a) If A € (%Z), O) U (0, 00), then(1.1) is HUS, with best HUS constant

1
K=—.
Al
1
(b) IfX=00r A= —— (14 Wy(e™")), then (1.1) is not HUS.

-

(c) If A € (—oo, — (1+W0(el))) u (—é (L+Wo(e ™), %“;1))

then (1.1) is HUS, with best HUS constant K = Ky as in (2.1).
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(iii) Suppose h > Then, (14 h\)e* = —1 at

>

Wo(e 1)
1 1 a o 1 1 a o

)\,1 = —E + EW,1 <—ﬁ€ﬁ) (ll’ld )\0 = —— 4 EWO (—E€F> y

and we have the following subcases.

(a) If X € (—%,O) U (0, 00), then (1.1) is HUS, with best HUS constant K =
1
Bk
(b) If \ = A_1, A= Ao, or A =0, then (1.1) is not HUS.
(c) If N € (—o0, A1) U (A_1,A) U ()\0, —%) then (1.1) is HUS, with best
HUS constant K = |Kg| as in (2.1).

Proof. Cases (i)(a), (ii)(a), and (iii)(a) all follow from [2, Corollary 3.8], while cases
(1)(b), (i1)(b), and (iii)(b) all follow from [2, Theorem 3.10(ii)].
Case (i)(c). Suppose A < ——. Since 0 < h < L, the base of the expo-
h Wo(e_l)
nential function (1.3) satisfies (1 + h\)e®* € (—1,0). Consequently, as ey(t,0) =
(1+ h)\)ke’\(t_hk), we have an exponential function that changes sign; in particular,
ex(t,0) < Oforall t € [k(a + h),k(a + h) + o] when k is odd. Let ¢ satisfy the
perturbed equation (1.2), and note that

z(t) = poea(t,0)
is a well-defined solution of (1.1). Then, for ¢ € [k(a + h),k(a + h) + «, we have
t = k(a+ h) + j for some j € [0,a], and

|p(t) —x(t)] = |¢oexr(t,0) + ea(t, 0)/0 #%AS — ¢oen(t,0)

t
1
< o0 [ oA
a+h 2a+h
= ¢lex(t,0)] (/ / /
k(o+h)
4 / 4 / LA
kath)—h  Jr(a+n) ) lex(a(s),0)]
2a+h k(a+h)—h 1
— elea(t,0) / / B
k—1)(a+h) ) lex(s,0)]
a+h) k(o+h) As
(L i
o 2a+h k(a+h)—h lex(a(s),0)]
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k(a+h)+j ds
o
Kath)  lea(s,0)]

k—1 ea)\ _1

)\‘ 1+ h)\|mea)\(m+l)

= |1+ ha[Ferkatd) (

m=0

k
+mz_1 |1 4 hA|meorm N A1 4 hA|F (eA(kaJrj) N eAka))

1+ M1+ h\) — 267 (1 + b))
= © < A+ eI RN )
e (14 hA) — (1+20))
—_A( 1+ M1+ h) )

<

where the penultimate line is the result of taking £ — oo, and the last line follows by
letting 7 = 0. This shows that (1.1) has HUS with HUS constant at most

K. 1 (ea*(1+h>\)—(1+2h>\)>7

Y 1+ eX(1+ h))

1
whenever A < 7 and we assume 0 < h < . On the other hand, given any

«
W0(€_1>
e >0, let
_cex(o(s),0)

" lea(o(s), 01"

Clearly |¢(s)| = € for all s € T. Using this ¢ in a function ¢ of the form (1.5), we have
that

q(s) seT.

6(t) = doea(t. 0) + & ex(t,0) / ,@W

and ¢ satisfies (1.2). Let x the solution of (1.1) with 2y = ¢¢. Lett = k(a+ h) (j = 0)
for arbitrarily large k£ € Ny. Then, similar to the calculations done above,

6(t) — 5(t)] = elex(t, 0)] / WA

k-1
e — 1

— 1 h)\k Aka)
8’ + ’ € mz::o/\|l+h)\|mea)\(m+l)

i h
+mzzl Ty mymeam>

E(hA + (=14 €M1+ hA|) (=1 + e*A1 + hAJF)
A(—1+ eM1 + hA|) ’
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1
sothat,againwitht:k(a+h),k€Nolarge,and)\<_Ewitho<h<ﬁ,
we have

B (—1 4 M1 - BAD (=1 + kX1 + BAl*
lim |¢(t) — (t)] = i oA+ (Z1 4+ e [L 4 AA(=1 + ™M1 + hAPY)

t—00 k—o0 )\<—1+€a)‘|1—|—h)\|>
_ & M1+ hA\) — (1 +2h))
-2 14+ eM(1+ hA) ’

the same constant as above in (2.1). This proves KR in (2.1) is the best possible constant.

1 -1
Case (ii)(c). Let \ € <_5 (1+ Wo(e™), %Z)) Ash = % we have
A
(14 hA)e* € (—1,0); to see this, set f(A) := (1 + hX)e™ = 1+ 22 ) e,
Wg(e_l)

Then,

f (_é (1+ WO(G_I))) = (1 + %60(16)_1)) o1 Wole™)

—1 —1
eWp(e=1)eWole™) — g(e1)

W()(efl)

—

=1

by the property of the Lambert W function; also, f < ) = 0. This implies, if

t =k(a+ h)+ jforj €0, al, then

lex(t, 0)] = ([(1 +hA)e )" e < [(1 4 ha)e |t <1

for any k € Ny, and thus forall ¢ € T, and
t{r& |€)\(t, 0)‘ = 0.

The proof of the rest of this case is similar to the proof above of case (i)(c), leading

to K as in (2.1) using the fact that ae Vo) = ﬁ = /1 by the Lambert IV
ole

function properties. Clearly this is the same K value as found earlier, in Theorem 2.1

1
(iii). For \ € (—oo, ——(1+ Wo(e_l))), we also have (1 +h\)e € (—1,0). Thus,
a

case (ii)(c) holds.
Case (iii)(c). Let the exponential function be given by (1.3). For A € (A_1, )\g), the
base of the exponential function satisfies (1 4 h)\)e®* < —1. If ¢ satisfies (1.2), then ¢

has the form given in (1.5), and
* q(s)
———As
/0 ex(o(s),0)
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exists and is finite. Note that
z(t) = zoea(t,0) for xo= o —l—/ &As
o el
is a well-defined solution of (1.1), and
_ RO
o(t) —z(t)] = lex(t,0)] |- —T———As
< glex(t,0) |/ As

O'S

-1

Zk:H AL+ hA|mecvA (m+1)

. Z h 1 1
e T BAmeedm T N[ RAJF \ AEate) T Alket)

(—1 + e (14 hA) + (e — ) |1 + h)|)
A (=1 + e |1 + hA|)
e ((1+2hA) — e**(1 4 hA))

= el + hA[FN ket (

<
- A (14 e 1+ hN))
= ’KR| £
for K = Kpg in (2.1), having taken j = 0 to get the penultimate line. ]

2
Example 2.2. Let \ = —— for 0 < h < L. By Theorem 2.1(i)(c), (1.1) is
h W0(€_1>

Hyers—Ulam stable, with minimal HUS constant

K-t =L e (5).

where we have used X' = Ky in (2.1).

Remark 2.3. Fix the jump size h >
tend to 0. Then,

%, as above in Theorem 2.1(iii), and let «

lim P, = hZ.
a—0

1 1 a 2
Note that, for &« = 0, (1 + hA) = —1 at 1im Ao = lim T + —WO <—%eﬁ> =7

h:rré A_1 = —00, and we have the followmg subcases from Theorem 2.1(iii), with = 0.
o—r

1 1
(a) If XA € <_E’ 0) U (0, c0), then (1.1) is HUS, with best HUS constant K’ = —.
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2
(b) If A\ = e and A = 0, then (1.1) is not HUS.

2 2 1
() If X € (—oo, _E) U (—E, _E)’ then (1.1) is HUS, with best HUS constant

K=—-.
A+ 7]

Case (iii)(c) recovers the K value found in the hZ case in Onitsuka [23, Remark 4.6];
see also [4, Theorem 2.6].

Remark 2.4. If one does the analogous analysis on P, ;, using the nabla backward differ-
ence operator instead of the Delta forward difference operator, then similarly interesting
results are obtained. In the nabla case, the nabla differential operator is defined by

—x(t) :t € (k(a+h),k(a+ h) + o
z(t) — x(t — h)
h

zV(t) =

t=k(a+h),

and the nabla exponential function is given via

eM 1

ex(t,0) = —————, AeC\q-,. 2.2
500 = e €z 22

If we take Y )

~ hA —1+ e (1 — 2hA
= 2.3
K A(hX — 1 — ) 2-3)

for the nabla dynamic equation
1

zV(t) = \x(t), XeC\ {E} , teT, (2.4

compare the following theorem with Theorem 2.1.

Theorem 2.5 (Nabla equation). Fix o > 0, and let A € R\ {1/h}. Also, let Ky be given
as in (2.3). We have the following cases.

. !
(i) Suppose 0 < h < W.

1
(a) If A € (—o0,0) U <O, E)’ then (2.4) is Hyers—Ulam stable, with best HUS
constant K = —.
A
(b) If \ =0, then (2.4) is not Hyers—Ulam stable.
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1 ~
(c) If X € (E’ oo), then (2.4) is HUS, with best HUS constant K = K.

«
W(] (6_1) '
and we have the following subcases.

Then, (1 — hA)"'e™ = —1lat X = = (1+Wy(e ™)),

SHRS

(ii) Suppose h =

~1
(a) If\ € (—o0,0)U (0, Wo(e )>, then (2.4) is HUS, with best HUS constant
o
1

K= —
R

1
(14 Wol(e™")), then (2.4) is not HUS.

«

(b) If N\ =0o0r \ =

-1 1
(c) If X € (WOS ), o (1+ Wo(e_l))) U (a (1+ Wole™)), oo), then
(2.4) is HUS, with best HUS constant K = [?R as in (2.3).

(iii) Suppose h > Woé_l). Then, (1 — h\)"'e** = —1 at
~ 1 1 a o N 1 1 a o
A = E — aw_l (—ﬁ€h> and )\0 = E — EWO (—E€h> s

and we have the following subcases.

(a) If X € (—o0,0) U (O, %), then (2.4) is HUS, with best HUS constant K =
1
o
(b) If \ =0, \ = Xo, or \ = /):,1, then (2.4) is not HUS.

1 ~ SO ~
(c) If A € <E’ /\0) U (/\0,/\_1> U ()\_1, oo), then (2.4) is HUS, with best

HUS constant K = ‘I?R‘ as in (2.3).

Remark 2.6. If we compare K in (2.1) with IA(R in (2.3), we see that

K] = |Ra(=))

)

where we have made them into functions of the parameter \.
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3 Complex Eigenvalues

1
In this section, we extend the considered values of the eigenvalue to A € C\ {_E} on

the time scale PP, 5, for continuous interval size o > 0 and discrete jump size h > 0. To
further motivate our use of the Lambert W function, consider the exponential function
given in (1.3). Set the base of the exponential function as follows, (1 + h/\)ea)‘ = Re",

for R > 0,i=+—1,and 6 € (—m, 7. Letw = % + a\. Then, the following are
equivalent:
(1+h\)e* = Re"
Ra
<g + a)\) e = —aew

h h
we¥ = %624-10
w = W, (%GQ—HB) :

so that

1 1 Ra o,
)\ = — + _WZ _Oéeﬁ—He 9 0 E (_ﬂ-? 7[—}7 R > 07 h’ > 0’ (31)
h  « h

for various branches of the Lambert W function in the complex plane determined by
z € 7, for § € (—m, x|, with a branch cut along the negative real axis, and principal
branch W,

Theorem 3.1 (Delta equation). Let A € C\ {—%} have the form (3.1), and let W, be
the Lambert W function for any z € Z.

(i) If R =1, then (1.1) is not Hyers—Ulam stable.

(ii) If R > 1, then (1.1) is Hyers—Ulam stable, with HUS constant at most

R — 1 — ReU=®ReN) 1 i Re(N) (1 4 B Re(N))

K¢ = 3.2
S (R= T Re) -
h+ R
or K¢ = R+_ 10‘ if Re(\) = 0.
(iii) If 0 < R < 1, then (1.1) is Hyers—Ulam stable, with HUS constant at most
R —1— Reli—a)Re(N) 1 ciRe(N) (1 1 L Re(\
|Kc| = max ‘ e P hRY) 5

jelo,al (1= R)Re())
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1
Proof. Let A € C\ {_E} have the form (3.1), and let 1V, be the Lambert 1/ function

for any z € Z.

1
Case (i). If R = 1, then \ = -5+ —W (heh“9> for € (—n, m| and for fixed
a
z € Z. Let the exponential function be given by (1.3). Then, fort = k(aw+ h) + j €
[k(a+h),k(ac +h) + ] and j € [0, ],
ex(t,0) = [(1+ h)\)eo"\}k eI = IR

Note that, for all j € [0,a] and 6 € (—7, 7], and for any fixed z € Z, the real part of A
satisfies Re(\) < 0, and

lex(t,0)] = eI R ¢ [eaRe(”\), 1} .

So, with ey(t,0) = ¢ for t = k(o + h) +j, j € [0,a], and § € (—m,7], set
o(t) = etex(t,0). Then, we have

|02 (1) — Ao (t)| = |eMten(t,0) + e (t,0) — eXtex(t,0)| = ]e(t,0)] < e
implies that ¢ satisfies (1.2), so that
1p(t) — z(t)] = |ea(t,0)||et — xo| > BV |et — 20| = 00

for any possible initial condition zy, meaning (1.1) is not HUS for R = 1, that is when

1 1 o
A= 7 + =W, (%63“9) for any 0 € (—m, 7], h > 0, and for any fixed z € Z.
a
1 R
Case (ii). Let R > 1, that is, let A = _E —W ( ha h“e), initially with

Re(\) # 0, for 0 € (—m, 7] and z € Z. Let the exponentlal function be given by (1.3),
and let ¢ satisfy (1.2). Then, ¢ has the form given in (1.5), and again,

/ Toas)

o ex(o(s),0)

exists and is finite, as |e (¢, 0)| = RFe/BeY for R > 1and t = k(a+h) + 4, j € [0, al.
Note that

z(t) = xpex(t,0), o = ¢o + /000 %As

is a well-defined solution of (1.1). Now, to integrate from s = 0to s = ¢t = k(a+h)+
for some k € {0,1,2,...} and j € [0, ], we see that there are k continuous intervals
and k gaps to integrate over, plus the final partial interval (continuous), so that

m(a+h)+a ds
/ |€>\ /7na+h) lex(s, 0)]

M?
o -
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z]f: /m(a+h) As t ds
EEI Y S
m(a+h)—h |6A(U(S 70)‘ k(a+h) ’6,\(8, 0)|

m=1

1 .
& o—j Re(N) h J e—ERe()\)

= dj — al

h —1 —£Re()) ’
+ — + —=———¢
mzzl R™ ~ RFRe(\) —0

_ :( nHa 6“"Re(”;) h(RF —1) 1— e R
= T RER-DReN)  TRE-1) T RBRe(y oY

+

and

/°° / _ R —e ety h
= lim + .
o lex(o(s),0)] =0 |e)\ (R—1)Re()) R—1

Using these two integral values, we have

6(t) —2(t)] = |ex(t, 0>|‘ /w(q&m

§€|€)\t0|/ ’60
A

= ctaton ([ /)| >§)

z—:(R 1+ 7 Re(®) Reﬂa Re(x
(R —1)Re())

+ el R, Re(A))

for j € [0,al, and for fixed z € Z, R > 1, 0 € (—m,n| that determine A € C with
Re(A) # 0. Set K as in (3.2), that is,

R — 1+ eiRe®) _ Reli=a)Re(Y) 4 piRe(N)p Re()\)

K¢ := max

j€l,al (R—1)Re(N)
1 1 ROK a4ig .
Therefore, (1.1) has HUS for A = ~% +—-W, Teh *) withRe(\) #0and R > 1,
«

with HUS constant at most K¢. If Re(\) = 0, then

R—1+ ej Re(N\) _ Re(j—a) Re(X) + ej Re()\)h Re()\)

lim K¢ = lim max

Re(\)—0 Re(\)—0 j€[0,a] (R—1)Re(N)
C h+ Ra+j(1—R)
j€l0,a] R—-1
h+ Ro

R—1"
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since R > 1 in this case. As a result, (1.1) is HUS with HUS constant at most K¢ =
h + Ra
R—1"
N 1 1 Ra o 9
Case (iii). Finally, let A = — +-W, . —eh for € (—m,n]and R € (0, 1),
o

let the exponential function be given by (1.3), and let ¢ satisfy (1.2). Using R € (0,1)

and (3.4), as well as t = k(a + h) + j for j € [0, a], we can modify (3.4) to get

for R > 1 and Re(\) = 0. In either instance, case (ii) holds.

/t As  RO-RY(I—c™0) h1-RY 1m0
|€/\ :

RF(1 — R)Re()) R(1—R)  RRe(N)

If ¢ satisfies the perturbed equation (1.2), then ¢ is again given as in (1.5). Let x be a
solution of (1.1) with form (1.4), where

) b R(L— o)y
9"“)_%_‘3(1—1%Jr (1 — R)Re()) >

note that both fractions in the parentheses here are positive, due to R € (0,1) and
Re(A) < 0 in this case. Employing (3.5) with t = k(« + h) + j, we see that

6() —2(t)] = lea(t, 0)] |do + / %A
1

(ol
| %A e (1 ey A Rem)) ’

< €| t O / 1 54 h n R(l — e—aRe(A))
e
< el lex(c(s),0 1—R ' (1—R)Re())
< 1 . efaRe()\)> h 1— efj Re(A))

RFI—R)Re(\)  RF(1—R)  RFRe()

Re()) (R(l o e—ocRe(A)) h 1 — €_j Re(A))

I—RRe() 1-R ' Re(

1 — R+ Reli=@)Re®) _ eiRe(N) (1 4 h Re(N))
: ( (—1+ R)Re(V) )

IN

1 1 Ra o
for j € [0,a],as R € (0, 1). Therefore (1.1) has HUS for A = _E+_WZ ( hae ntio
o
for R € (0, 1), with HUS constant given by at most X = | K¢| given in (3.3), for K¢ as

in (3.2). This ends the proof. ]

Remark 3.2. In Figure 3.1, we illustrate the effects of an increasing jump size h, relative
to «, on the eigenvalues \ as parameterized curves in the complex plane. Here, o = 1,
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Figure 3.1: Delta case: Let & = 1, and let A be as in (3.1), for all § € (—m, 7| and z =

1
—1 (orange), z = 0 (cyan), z = 1 (blue). Let R = 5 (left-hand curve and oval), R = 1
(red middle curve, unstable manifold), and R = 2 (right-hand curve). Left Graph:
h = 3.0 The parameterized values of A € C before the bifurcation in the unstable

1
manifold has occurred. Middle Graph: h = ——— =~ 3.59112 (the bifurcation
W()(B_l)

value) The unstable manifold is the homoclinic orbit given by the parameterized graph
of A = —Wy(e™) + W,(e'**). Right Graph: h = 3.7 The parameterized values of
A € C after the bifurcation in the unstable manifold has occurred. End of caption.

1

and h increases from h = 3.0, through the bifurcation value of h = m, to
olé

h = 3.7, after the bifurcation in the parameter space has occurred. In Figure 3.2, the

complex eigenvalues for the nabla equation are likewise illustrated.

Remark 3.3. For \ as given in (3.1), note that R = |1 + h\| e*F*™ | As the jump size
1

h > 0 approaches zero with a > 0 fixed, R = e*®™ implies Re(\) = —InR. If
a

we write A = Re(A) 4+ Im(\)i, where Re and Im are the real and imaginary parts of

1
A e C\ {_E }, respectively, then

Recos(f) = e“®*WN [(1 + hRe())) cos(Im(N)) — hIm(N) sin(Im(N))],
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Rsin(f) = e*BM [(1 + hRe())) sin(Im(N\)) + hIm(\) cos(Im(N))] ;

taking h to zero, we see that sin(f) = sin(Im(\)) and cos(f) = cos(Im(A)). Summa-
rizing, we have that for fixed o > 0,

lim P,, =R
h—0t

and

1
lim A\=—InR+ (6 +27z)i, R>0, 0e€(—mmn|, z€Z.
h—0t «

In particular, note that for R = 1, the eigenvalues A in (3.1) converge to purely imag-
inary points in the complex plane as the jump size h goes to zero, which corresponds
to the known fact that the Hyers—Ulam instability region for (1.1) with T = R is the
imaginary axis. See Theorem 3.1(i).

Remark 3.4. Similar to Remark 2.3 earlier, fix the jump size h > ﬁ, and let «
o\€
tend to 0. Then, lin% P,n = hZ, and we have the following cases from Theorem 3.1,
a—

with o = 0, along the principal branch of the Lambert W function, Wj,.
(1) If R =1, then (1.1) is not Hyers—Ulam stable.

(i) If R > 1, then (1.1) is Hyers—Ulam stable, with HUS constant at most

h h

K¢ = = ,
CTR-1 1+hN-1

(1) If 0 < R < 1, then (1.1) is Hyers—Ulam stable, with HUS constant at most

h o h
I1—-R 1—|1+h)\

K = |K¢| =

Thus, we recover the (best) K value found in the hZ case in [4, Theorem 2.6]. Since

|Kc| =

= , which is the absolute value of the reciprocal of the
T+ hN 1] [Ren(V)] P

Hilger-real part of \, we can view K ! as the P, n-real part of A in some sense.

Remark 3.5. Consider the nabla case with A € C\{1/h} on the time scale PP, ;, for
continuous interval size a > 0 and discrete jump size h > (0. With the nabla ex-
ponential function given in (2.2), set the base of the exponential function as follows,

(1-— h)\)’lea)‘ = Re”, for R > 0,i=+—1,and 6 € (—m,7]. Letw = % — a\. Then,

the following are equivalent:

(1—nA)"e™ = Re”
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Figure 3.2: Nabla case: Let & = 1, and let X be as in (3.6), for all § € (—mn, 7]
1
and z = —1 (black), z = 0 (cyan), 2z = 1 (brown). Let R = 5 (left-hand
curve), R = 1 (orange/red/pink middle curves, unstable manifold), and R = 2
(oval and right-hand curve). Left Graph: h = 3.0 The parameterized values of
A € C before the bifurcation in the unstable manifold has occurred. Middle Graph:
1
h = m ~ 3.59112 (the bifurcation value) The unstable manifold is the ho-
olé™

moclinic orbit given by the parameterized graph of A = —W,(e™!) + W, (' ). Right
Graph: h = 3.7 The parameterized values of A € C after the bifurcation in the unsta-
ble manifold has occurred. End of caption.

we¥ = %6%%9
).
so that
A=ty (ie%ﬂ‘@) . 0e(-ma], R>0, h>0,  (36)
h « hR

for various branches of the Lambert W function in the complex plane determined by
z € Z, for § € (—m, x|, with a branch cut along the negative real axis, and principal
branch Wj. Compare the following theorem with Theorem 3.1.



276 Anderson, Jennissen, Montplaisir

Theorem 3.6 (Nabla equation). Let A € C\{1/h} have the form (3.6), and let W, be
the Lambert W function for any z € 7.

(i) If R =1, then (2.4) is not Hyers—Ulam stable.
(ii) If R > 1, then (2.4) is Hyers—Ulam stable, with HUS constant at most

~ R —1— RelU=®Re) 4 eiRe() (1 + Rh Re(N))
K¢ = 3.7
¢ = e (R~ R0 B
~ R(h+a) .
OI"K(C = ﬁ lfR,e(/\) =0.
(iii) If 0 < R < 1, then (2.4) is Hyers—Ulam stable, with HUS constant at most
~ — 1 — Rel—a)Re(A) 4 giRe(M) (1 hRe(\
K = |Re| = max L fe P F RARY) 5

jelo.al (1— R)Re(\)

4 Related Time Scales

Related to the time scale T = PP, j, are time scales with continuous intervals broken up
by isolated points. For example, consider the time scale

[e.o]

T:Paﬂﬁﬁ = U[k(a767776)7k(a75a775)+a]

k=0

U{k(a, B,7,0) + (a+ B)} U{k(a, 8,7,0) + (a+ B+ )},

which one can think of as dash-dot-dot, dash-dot-dot, and so on, a continuous dash or in-
terval of length «, followed by jumps of length (3, v to two isolated points, respectively,
followed by a jump of length ¢ to the next continuous interval, repeated.

Theorem 4.1. Let 7), = [k(a, 8,7,0), k(a, B,7,0) + «. The solution to
£L‘A(t) = /\J}(t), te Paﬁ’%(s,
is given by the exponential function

<<1+w><1+w<1+&>

e(B+r+0)A ift € Iy

(L BN (L) (L4 0X) e it = T
(14 BN+ (1 4+ 00 e D ift =T s,

for each fixed k € Ny and t € P, .5 where T}, o3 = k(o,3,7,6) + (a + ) and
Tk,oz,ﬂ,'y = ]{?(Oé, 57 /77 5) + (Oé + 5 _'_ f}/)

The HUS analysis for this time scale would clearly track with the analysis earlier in
this work, and involve the Lambert 1V function.

6)\(t, O) =
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