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Abstract

We investigate the Hyers–Ulam stability (HUS) of a certain first-order linear
complex constant coefficient dynamic equation on the time scale Pα,h, which has
continuous intervals of length α > 0 followed by discrete jumps of length h > 0.
In particular, we establish results in the case of this specific time scale, for co-
efficient values in the complex plane, including where the exponential function
alternates in sign. In our analysis, we employ the Lambert W function. For in-
creasing jump size h relative to α, we prove that the complex constant coefficient
undergoes a bifurcation in its parameter space. We establish interesting results for
both the delta dynamic equation and the nabla dynamic equation.

AMS Subject Classifications: 34N05, 34A30, 34D20, 39A06, 39A30, 39A45.
Keywords: Hyers–Ulam, forward difference operator, backward difference operator,
bifurcation, Lambert W function, complex eigenvalue.

1 Content Prelude
Imagine a data burst or transmission signal broadcast over a short time period, and then
repeated, or a device or system that runs continuously for a fixed time, shuts off, and
then runs again. In biology, think of an organism that lives a fixed unit of time, followed
by hibernation or dormancy, and then is active again, and so on. These scenarios may be
modeled by a specific time scale T with fixed jump size that displays both continuous
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and discrete properties, see Bohner and Peterson [8, Examples 1.38–1.40], where a time
scale is any closed subset of the real line R. In particular, let T = Pα,h for continuous
interval length α > 0 and discrete jump size h > 0, namely

Pα,h =
∞⋃
k=0

[k(α + h), k(α + h) + α],

and consider the differential operator defined by

x∆(t) =


d

dt
x(t) for t ∈ [k(α + h), k(α + h) + α)

x(t+ h)− x(t)

h
for t = k(α + h) + α.

We will be investigating some stability questions for this time scale and this derivative
operator, in the Hyers-Ulam sense, defined below. Note that this problem is explored
briefly but incompletely in [2, Example 4.1]. Our aim is to give a more robust analysis
of the situation in this work.

Time scales were introduced by Hilger [12] to unify continuous and discrete anal-
ysis. Hyers–Ulam stability was initiated by Ulam [27], followed by Hyers [13] and
Rassias [25]. Some early work on differential equations and this type of stability in-
clude Miura et al. [18, 19] and Jung et al. [14–17]. Some recent papers on HUS and
difference equations or more generally time scales include Anderson [1], Anderson and
Onitsuka [2–6], Andras et al. [7], Brzdek et al. [9], Buse et al. [10], Nam [20–22],
Onitsuka [23, 24], and Shen [26].

Definition 1.1 (Hyers-Ulam Stability). We say that

x∆(t) = λx(t), λ ∈ C\
{
−1

h

}
, t ∈ T (1.1)

has Hyers–Ulam stability on T if and only if there exists a constant K > 0 with the
following property. For arbitrary ε > 0, if a function φ : T→ C satisfies

|φ∆(t)− λφ(t)| ≤ ε, t ∈ T, (1.2)

then there exists a solution x : T → C of (1.1) such that |φ(t) − x(t)| ≤ Kε for all
t ∈ T. Such a constant K is called an HUS constant for (1.1) on T.

In this work, we consider the time scale T = Pα,h, and the time scale eigenvalue
problem given in (1.1). For t ∈ T, we have the forward jump operator σ defined by

σ(t) :=

{
t for t ∈ [k(α + h), k(α + h) + α),

t+ h for t = k(α + h) + α.
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For λ ∈ C\
{
−1

h

}
, the exponential function eλ(t, 0) is given by

eλ(t, 0) = (1 + hλ)keλ(t−hk), t ∈
[
k(α + h), k(α + h) + α

]
, k ∈ N0, (1.3)

which can also be written as

eλ(t, 0) =
[
(1 + hλ)eαλ

]k
eλj, t = k(α + h) + j, j ∈ [0, α].

Clearly, the exponential function in (1.3) is well defined for λ ∈ C\
{
−1

h

}
. Notice that

x(t) = x0eλ(t, 0), t ∈ T, (1.4)

is the general solution of (1.1), for the exponential function eλ given in (1.3). Moreover,
for given ε > 0, the function

φ(t) = φ0eλ(t, 0) + eλ(t, 0)

∫ t

0

q(s)

eλ(σ(s), 0)
∆s, |q(s)| ≤ ε ∀s ∈ T, (1.5)

where∫ t

k(α+h)

q(s)

eλ(σ(s), 0)
∆s =

∫ t

k(α+h)

q(s)

eλ(s, 0)
ds, t ∈ [k(α + h), k(α + h) + α]

and ∫ k(α+h)

k(α+h)−h

q(s)

eλ(σ(s), 0)
∆s =

hq(k(α + h)− h)

eλ(k(α + h), 0)
,

is the solution of (1.2) by the variation of parameters formula, see Bohner and Peterson
[8, Theorem 2.77].

Throughout the paper, we will need to employ the Lambert W function, see Corless
et al. [11], which we denote by Wz, where Wz satisfies Wz(y)eWz(y) = y, for every
z ∈ Z. For example, using (1.3) and t = k(α + h), we have

eλ(k(α + h), 0) = [(1 + hλ)eαλ]k.

To prevent this from vanishing, we always assume λ 6= −1

h
. Moreover, we will see that

other key values for λ ∈ R include when the base (1 + hλ)eαλ = ±1. If λ = 0, then
(1 + hλ)eαλ = 1, but, for λ ∈ R, we note here that for the branches z = −1, 0 of the
Lambert W = Wz function,

(1 + hλ)eαλ = −1⇐⇒ λ =
−1

h
+

1

α
W0

(
−α
h
e
α
h

)
and h ≥ α

W0(e−1)
≈ 3.59112α,

where h > 0 is the jump size, andW0 is the principal branch of the LambertW function.

In particular, if h =
α

W0(e−1)
and λ = − 1

α
− 1

h
≈ −1.27846

α
, then eλ(k(α + h), 0) =

(−1)k.
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2 Hyers–Ulam Stability on Pα,h
We now give our first new results, when the eigenvalue λ is a real number; in a later
section, we will consider the more general case of λ ∈ C. Moreover, we will fix α >
0 and let the jump size h > 0 range over all positive real numbers in relation to α.
Of course, one could also fix h > 0 and let α > 0 vary, as well. For the sake of
completeness, we will include the details of proofs for this specific time scale T = Pα,h.
We will refer to the following constant,

KR =
1

−λ

(
eαλ(1 + hλ)− (1 + 2hλ)

1 + eαλ(1 + hλ)

)
, (2.1)

throughout the remainder of this section.

Theorem 2.1 (Delta equation). Fix α > 0, and let λ ∈ R\
{
−1

h

}
. Also, let KR be

given as in (2.1). We have the following cases.

(i) Suppose 0 < h <
α

W0(e−1)
.

(a) If λ ∈
(
−1

h
, 0

)
∪ (0,∞), then (1.1) is Hyers–Ulam stable, with best HUS

constant K =
1

|λ|
.

(b) If λ = 0, then (1.1) is not Hyers–Ulam stable.

(c) If λ ∈
(
−∞, −1

h

)
, then (1.1) is HUS, with best HUS constant K = KR.

(ii) Suppose h =
α

W0(e−1)
. Then, (1 + hλ)eαλ = −1 at λ = − 1

α

(
1 +W0(e−1)

)
,

and we have the following subcases.

(a) If λ ∈
(
W0(e−1)

−α
, 0

)
∪ (0,∞), then(1.1) is HUS, with best HUS constant

K =
1

|λ|
.

(b) If λ = 0 or λ = − 1

α

(
1 +W0(e−1)

)
, then (1.1) is not HUS.

(c) If λ ∈
(
−∞, − 1

α

(
1 +W0(e−1)

))
∪
(
− 1

α

(
1 +W0(e−1)

)
,
W0(e−1)

−α

)
,

then (1.1) is HUS, with best HUS constant K = KR as in (2.1).
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(iii) Suppose h >
α

W0(e−1)
. Then, (1 + hλ)eαλ = −1 at

λ−1 := −1

h
+

1

α
W−1

(
−α
h
e
α
h

)
and λ0 := −1

h
+

1

α
W0

(
−α
h
e
α
h

)
,

and we have the following subcases.

(a) If λ ∈
(
−1

h
, 0

)
∪ (0,∞), then (1.1) is HUS, with best HUS constant K =

1

|λ|
.

(b) If λ = λ−1, λ = λ0, or λ = 0, then (1.1) is not HUS.

(c) If λ ∈ (−∞, λ−1) ∪ (λ−1, λ0) ∪
(
λ0, −

1

h

)
, then (1.1) is HUS, with best

HUS constant K = |KR| as in (2.1).

Proof. Cases (i)(a), (ii)(a), and (iii)(a) all follow from [2, Corollary 3.8], while cases
(i)(b), (ii)(b), and (iii)(b) all follow from [2, Theorem 3.10(ii)].

Case (i)(c). Suppose λ < −1

h
. Since 0 < h <

α

W0(e−1)
, the base of the expo-

nential function (1.3) satisfies (1 + hλ)eαλ ∈ (−1, 0). Consequently, as eλ(t, 0) =
(1 + hλ)keλ(t−hk), we have an exponential function that changes sign; in particular,
eλ(t, 0) < 0 for all t ∈ [k(α + h), k(α + h) + α] when k is odd. Let φ satisfy the
perturbed equation (1.2), and note that

x(t) = φ0eλ(t, 0)

is a well-defined solution of (1.1). Then, for t ∈ [k(α + h), k(α + h) + α], we have
t = k(α + h) + j for some j ∈ [0, α], and

|φ(t)− x(t)| =

∣∣∣∣φ0eλ(t, 0) + eλ(t, 0)

∫ t

0

q(s)

eλ(σ(s), 0)
∆s− φ0eλ(t, 0)

∣∣∣∣
≤ ε|eλ(t, 0)|

∫ t

0

1

|eλ(σ(s), 0)|
∆s

= ε|eλ(t, 0)|
(∫ α

0

+

∫ α+h

α

+

∫ 2α+h

α+h

+ · · ·

+

∫ k(α+h)

k(α+h)−h
+

∫ t

k(α+h)

)
1

|eλ(σ(s), 0)|
∆s

= ε|eλ(t, 0)|

[(∫ α

0

+

∫ 2α+h

α+h

+ · · ·+
∫ k(α+h)−h

(k−1)(α+h)

)
1

|eλ(s, 0)|
ds

+

(∫ α+h

α

+

∫ 2(α+h)

2α+h

+ · · ·+
∫ k(α+h)

k(α+h)−h

)
∆s

|eλ(σ(s), 0)|
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+

∫ k(α+h)+j

k(α+h)

ds

|eλ(s, 0)|

]

= ε|1 + hλ|keλ(kα+j)

(
k−1∑
m=0

eαλ − 1

λ|1 + hλ|meαλ(m+1)

+
k∑

m=1

h

|1 + hλ|meαλm
− 1

λ|1 + hλ|k

(
1

eλ(kα+j)
− 1

eλkα

))

≤ ε

(
1 + eαλ(1 + hλ)− 2ejλ(1 + hλ)

−λ (1 + eαλ(1 + hλ))

)
≤ ε

−λ

(
eαλ(1 + hλ)− (1 + 2hλ)

1 + eαλ(1 + hλ)

)
,

where the penultimate line is the result of taking k → ∞, and the last line follows by
letting j = 0. This shows that (1.1) has HUS with HUS constant at most

KR =
1

−λ

(
eαλ(1 + hλ)− (1 + 2hλ)

1 + eαλ(1 + hλ)

)
,

whenever λ < −1

h
and we assume 0 < h <

α

W0(e−1)
. On the other hand, given any

ε > 0, let

q(s) :=
ε eλ(σ(s), 0)

|eλ(σ(s), 0)|
, s ∈ T.

Clearly |q(s)| = ε for all s ∈ T. Using this q in a function φ of the form (1.5), we have
that

φ(t) = φ0eλ(t, 0) + ε eλ(t, 0)

∫ t

0

∆s

|eλ(σ(s), 0)|
,

and φ satisfies (1.2). Let x the solution of (1.1) with x0 = φ0. Let t = k(α+ h) (j = 0)
for arbitrarily large k ∈ N0. Then, similar to the calculations done above,

|φ(t)− x(t)| = ε|eλ(t, 0)|
∫ t

0

1

|eλ(σ(s), 0)|
∆s

= ε|1 + hλ|keλ(kα)

(
k−1∑
m=0

eαλ − 1

λ|1 + hλ|meαλ(m+1)

+
k∑

m=1

h

|1 + hλ|meαλm

)

= ε
(hλ+ (−1 + eαλ)|1 + hλ|)(−1 + ekαλ|1 + hλ|k)

λ(−1 + eαλ|1 + hλ|)
,
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so that, again with t = k(α + h), k ∈ N0 large, and λ < −1

h
with 0 < h <

α

W0(e−1)
,

we have

lim
t→∞
|φ(t)− x(t)| = lim

k→∞
ε

(hλ+ (−1 + eαλ)|1 + hλ|)(−1 + ekαλ|1 + hλ|k)
λ(−1 + eαλ|1 + hλ|)

=
ε

−λ

(
eαλ(1 + hλ)− (1 + 2hλ)

1 + eαλ(1 + hλ)

)
,

the same constant as above in (2.1). This provesKR in (2.1) is the best possible constant.

Case (ii)(c). Let λ ∈
(
− 1

α

(
1 +W0(e−1)

)
,
W0(e−1)

−α

)
. As h =

α

W0(e−1)
, we have

(1 + hλ)eαλ ∈ (−1, 0); to see this, set f(λ) := (1 + hλ)eαλ =

(
1 +

αλ

W0(e−1)

)
eαλ.

Then,

f

(
− 1

α

(
1 +W0(e−1)

))
=

(
1 +
−1−W0(e−1)

W0(e−1)

)
e−1−W0(e−1)

=
−1

eW0(e−1)eW0(e−1)
=
−1

e(e−1)
= −1

by the property of the Lambert W function; also, f
(
W0(e−1)

−α

)
= 0. This implies, if

t = k(α + h) + j for j ∈ [0, α], then

|eλ(t, 0)| =
∣∣∣[(1 + hλ)eαλ

]k
ejλ
∣∣∣ ≤ ∣∣(1 + hλ)eαλ

∣∣k ≤ 1

for any k ∈ N0, and thus for all t ∈ T, and

lim
t→∞
|eλ(t, 0)| = 0.

The proof of the rest of this case is similar to the proof above of case (i)(c), leading
to KR as in (2.1) using the fact that αe1+W0(e−1) =

α

W0(e−1)
= h by the Lambert W

function properties. Clearly this is the same K value as found earlier, in Theorem 2.1

(iii). For λ ∈
(
−∞, − 1

α

(
1 +W0(e−1)

))
, we also have (1 +hλ)eαλ ∈ (−1, 0). Thus,

case (ii)(c) holds.
Case (iii)(c). Let the exponential function be given by (1.3). For λ ∈ (λ−1, λ0), the

base of the exponential function satisfies (1 + hλ)eαλ < −1. If φ satisfies (1.2), then φ
has the form given in (1.5), and ∫ ∞

0

q(s)

eλ(σ(s), 0)
∆s
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exists and is finite. Note that

x(t) = x0eλ(t, 0) for x0 = φ0 +

∫ ∞
0

q(s)

eλ(σ(s), 0)
∆s

is a well-defined solution of (1.1), and

|φ(t)− x(t)| = |eλ(t, 0)|
∣∣∣∣−∫ ∞

t

q(s)

eλ(σ(s), 0)
∆s

∣∣∣∣
≤ ε|eλ(t, 0)|

∫ ∞
t

1

|eλ(σ(s), 0)|
∆s

= ε|1 + hλ|keλ(kα+j)

(
∞∑

m=k+1

eαλ − 1

λ|1 + hλ|meαλ(m+1)

+
∞∑

m=k+1

h

|1 + hλ|meαλm
− 1

λ|1 + hλ|k

(
1

eλ(kα+α)
− 1

eλ(kα+j)

))

=
ε
(
−1 + ejλ(1 + hλ) + (eαλ − ejλ)|1 + hλ|

)
λ (−1 + eαλ|1 + hλ|)

≤
ε
(
(1 + 2hλ)− eαλ(1 + hλ)

)
−λ (1 + eαλ(1 + hλ))

= |KR| ε

for K = KR in (2.1), having taken j = 0 to get the penultimate line.

Example 2.2. Let λ = −2

h
for 0 < h <

α

W0(e−1)
. By Theorem 2.1(i)(c), (1.1) is

Hyers–Ulam stable, with minimal HUS constant

K =
h(3e

2α
h − 1)

2(e
2α
h − 1)

=
h

2

(
2 + coth

(α
h

))
,

where we have used K = KR in (2.1).

Remark 2.3. Fix the jump size h >
α

W0(e−1)
, as above in Theorem 2.1(iii), and let α

tend to 0. Then,
lim
α→0

Pα,h = hZ.

Note that, for α = 0, (1 + hλ) = −1 at lim
α→0

λ0 := lim
α→0
−1

h
+

1

α
W0

(
−α
h
e
α
h

)
= −2

h
,

lim
α→0

λ−1 = −∞, and we have the following subcases from Theorem 2.1(iii), with α = 0.

(a) If λ ∈
(
−1

h
, 0

)
∪ (0,∞), then (1.1) is HUS, with best HUS constant K =

1

|λ|
.
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(b) If λ = −2

h
, and λ = 0, then (1.1) is not HUS.

(c) If λ ∈
(
−∞,−2

h

)
∪
(
−2

h
, −1

h

)
, then (1.1) is HUS, with best HUS constant

K =
1∣∣λ+ 2

h

∣∣ .
Case (iii)(c) recovers the K value found in the hZ case in Onitsuka [23, Remark 4.6];
see also [4, Theorem 2.6].

Remark 2.4. If one does the analogous analysis on Pα,h using the nabla backward differ-
ence operator instead of the Delta forward difference operator, then similarly interesting
results are obtained. In the nabla case, the nabla differential operator is defined by

x∇(t) =


d

dt
x(t) : t ∈ (k(α + h), k(α + h) + α]

x(t)− x(t− h)

h
: t = k(α + h),

and the nabla exponential function is given via

êλ(t, 0) =
eλt

[(1− hλ)ehλ]k
, λ ∈ C\

{
1

h

}
. (2.2)

If we take

K̂R =
hλ− 1 + eαλ(1− 2hλ)

λ (hλ− 1− eαλ)
. (2.3)

for the nabla dynamic equation

x∇(t) = λx(t), λ ∈ C\
{

1

h

}
, t ∈ T, (2.4)

compare the following theorem with Theorem 2.1.

Theorem 2.5 (Nabla equation). Fix α > 0, and let λ ∈ R\ {1/h}. Also, let K̂R be given
as in (2.3). We have the following cases.

(i) Suppose 0 < h <
α

W0(e−1)
.

(a) If λ ∈ (−∞, 0) ∪
(

0,
1

h

)
, then (2.4) is Hyers–Ulam stable, with best HUS

constant K =
1

|λ|
.

(b) If λ = 0, then (2.4) is not Hyers–Ulam stable.
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(c) If λ ∈
(

1

h
,∞
)

, then (2.4) is HUS, with best HUS constant K = K̂R.

(ii) Suppose h =
α

W0(e−1)
. Then, (1 − hλ)−1eαλ = −1 at λ =

1

α

(
1 +W0(e−1)

)
,

and we have the following subcases.

(a) If λ ∈ (−∞, 0)∪
(

0,
W0(e−1)

α

)
, then (2.4) is HUS, with best HUS constant

K =
1

|λ|
.

(b) If λ = 0 or λ =
1

α

(
1 +W0(e−1)

)
, then (2.4) is not HUS.

(c) If λ ∈
(
W0(e−1)

α
,

1

α

(
1 +W0(e−1)

))
∪
(

1

α

(
1 +W0(e−1)

)
, ∞

)
, then

(2.4) is HUS, with best HUS constant K = K̂R as in (2.3).

(iii) Suppose h >
α

W0(e−1)
. Then, (1− hλ)−1eαλ = −1 at

λ̂−1 :=
1

h
− 1

α
W−1

(
−α
h
e
α
h

)
and λ̂0 :=

1

h
− 1

α
W0

(
−α
h
e
α
h

)
,

and we have the following subcases.

(a) If λ ∈ (−∞, 0) ∪
(

0,
1

h

)
, then (2.4) is HUS, with best HUS constant K =

1

|λ|
.

(b) If λ = 0, λ = λ̂0, or λ = λ̂−1, then (2.4) is not HUS.

(c) If λ ∈
(

1

h
, λ̂0

)
∪
(
λ̂0, λ̂−1

)
∪
(
λ̂−1, ∞

)
, then (2.4) is HUS, with best

HUS constant K =
∣∣∣K̂R

∣∣∣ as in (2.3).

Remark 2.6. If we compare KR in (2.1) with K̂R in (2.3), we see that

|KR(λ)| =
∣∣∣K̂R(−λ)

∣∣∣ ,
where we have made them into functions of the parameter λ.
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3 Complex Eigenvalues

In this section, we extend the considered values of the eigenvalue to λ ∈ C\
{
−1

h

}
on

the time scale Pα,h for continuous interval size α > 0 and discrete jump size h > 0. To
further motivate our use of the Lambert W function, consider the exponential function
given in (1.3). Set the base of the exponential function as follows, (1 + hλ)eαλ = Reiθ,
for R > 0, i =

√
−1, and θ ∈ (−π, π]. Let w =

α

h
+ αλ. Then, the following are

equivalent:

(1 + hλ)eαλ = Reiθ(α
h

+ αλ
)
eαλ =

Rα

h
eiθ

wew =
Rα

h
e
α
h

+iθ

w = Wz

(
Rα

h
e
α
h

+iθ

)
,

so that

λ = −1

h
+

1

α
Wz

(
Rα

h
e
α
h

+iθ

)
, θ ∈ (−π, π], R > 0, h > 0, (3.1)

for various branches of the Lambert W function in the complex plane determined by
z ∈ Z, for θ ∈ (−π, π], with a branch cut along the negative real axis, and principal
branch W0.

Theorem 3.1 (Delta equation). Let λ ∈ C\
{
−1

h

}
have the form (3.1), and let Wz be

the Lambert W function for any z ∈ Z.

(i) If R = 1, then (1.1) is not Hyers–Ulam stable.

(ii) If R > 1, then (1.1) is Hyers–Ulam stable, with HUS constant at most

KC := max
j∈[0,α]

R− 1−Re(j−α) Re(λ) + ej Re(λ) (1 + hRe(λ))

(R− 1) Re(λ)
, (3.2)

or KC =
h+Rα

R− 1
if Re(λ) = 0.

(iii) If 0 < R < 1, then (1.1) is Hyers–Ulam stable, with HUS constant at most

|KC| = max
j∈[0,α]

R− 1−Re(j−α) Re(λ) + ej Re(λ)(1 + hRe(λ))

(1−R) Re(λ)
. (3.3)
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Proof. Let λ ∈ C\
{
−1

h

}
have the form (3.1), and let Wz be the Lambert W function

for any z ∈ Z.

Case (i). If R = 1, then λ = −1

h
+

1

α
Wz

(α
h
e
α
h

+iθ
)

for θ ∈ (−π, π] and for fixed

z ∈ Z. Let the exponential function be given by (1.3). Then, for t = k(α + h) + j ∈
[k(α + h), k(α + h) + α] and j ∈ [0, α],

eλ(t, 0) =
[
(1 + hλ)eαλ

]k
ejλ = ejλ+ikθ.

Note that, for all j ∈ [0, α] and θ ∈ (−π, π], and for any fixed z ∈ Z, the real part of λ
satisfies Re(λ) ≤ 0, and

|eλ(t, 0)| = ej Re(λ) ∈
[
eαRe(λ), 1

]
.

So, with eλ(t, 0) = ejλ+ikθ for t = k(α + h) + j, j ∈ [0, α], and θ ∈ (−π, π], set
φ(t) = εteλ(t, 0). Then, we have

|φ∆(t)− λφ(t)| = |ελteλ(t, 0) + εeσλ(t, 0)− ελteλ(t, 0)| = ε|eσλ(t, 0)| ≤ ε

implies that φ satisfies (1.2), so that

|φ(t)− x(t)| = |eλ(t, 0)||εt− x0| ≥ eαRe(λ)|εt− x0| → ∞

for any possible initial condition x0, meaning (1.1) is not HUS for R = 1, that is when

λ = −1

h
+

1

α
Wz

(α
h
e
α
h

+iθ
)

for any θ ∈ (−π, π], h > 0, and for any fixed z ∈ Z.

Case (ii). Let R > 1, that is, let λ = −1

h
+

1

α
Wz

(
Rα

h
e
α
h

+iθ

)
, initially with

Re(λ) 6= 0, for θ ∈ (−π, π] and z ∈ Z. Let the exponential function be given by (1.3),
and let φ satisfy (1.2). Then, φ has the form given in (1.5), and again,∫ ∞

0

q(s)

eλ(σ(s), 0)
∆s

exists and is finite, as |eλ(t, 0)| = Rkej Re(λ) for R > 1 and t = k(α+h) + j, j ∈ [0, α].
Note that

x(t) = x0eλ(t, 0), x0 = φ0 +

∫ ∞
0

q(s)

eλ(σ(s), 0)
∆s

is a well-defined solution of (1.1). Now, to integrate from s = 0 to s = t = k(α+h)+j
for some k ∈ {0, 1, 2, . . .} and j ∈ [0, α], we see that there are k continuous intervals
and k gaps to integrate over, plus the final partial interval (continuous), so that∫ t

0

∆s

|eλ(σ(s), 0)|
=

k−1∑
m=0

(∫ m(α+h)+α

m(α+h)

ds

|eλ(s, 0)|

)
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+
k∑

m=1

(∫ m(α+h)

m(α+h)−h

∆s

|eλ(σ(s), 0)|

)
+

∫ t

k(α+h)

ds

|eλ(s, 0)|

=
k−1∑
m=0

(∫ α

0

e−j Re(λ)

Rm
dj

)
+

k∑
m=1

h

Rm
+

∫ j

0

e−`Re(λ)

Rk
d`

=
k−1∑
m=0

−1

Rm Re(λ)
e−j Re(λ)

∣∣∣∣α
j=0

+
k∑

m=1

h

Rm
+

−1

Rk Re(λ)
e−`Re(λ)

∣∣∣∣j
`=0

=
R(Rk − 1)(1− e−αRe(λ)))

Rk(R− 1) Re(λ)
+
h(Rk − 1)

Rk(R− 1)
+

1− e−j Re(λ)

Rk Re(λ)
(3.4)

and ∫ ∞
0

∆s

|eλ(σ(s), 0)|
= lim

t→∞

∫ t

0

∆s

|eλ(σ(s), 0)|
=
R(1− e−αRe(λ)))

(R− 1) Re(λ)
+

h

R− 1
.

Using these two integral values, we have

|φ(t)− x(t)| = |eλ(t, 0)|
∣∣∣∣−∫ ∞

t

q(s)

eλ(σ(s), 0)
∆s

∣∣∣∣
≤ ε|eλ(t, 0)|

∫ ∞
t

1

|eλ(σ(s), 0)|
∆s

= ε|eλ(t, 0)|
(∫ ∞

0

−
∫ t

0

)
1

|eλ(σ(s), 0)|
∆s

= ε

(
R− 1 + ej Re(λ) −Re(j−α) Re(λ) + ej Re(λ)hRe(λ)

(R− 1) Re(λ)

)
for j ∈ [0, α], and for fixed z ∈ Z, R > 1, θ ∈ (−π, π] that determine λ ∈ C with
Re(λ) 6= 0. Set K as in (3.2), that is,

KC := max
j∈[0,α]

R− 1 + ej Re(λ) −Re(j−α) Re(λ) + ej Re(λ)hRe(λ)

(R− 1) Re(λ)
.

Therefore, (1.1) has HUS for λ = −1

h
+

1

α
Wz

(
Rα

h
e
α
h

+iθ

)
with Re(λ) 6= 0 andR > 1,

with HUS constant at most KC. If Re(λ) = 0, then

lim
Re(λ)→0

KC = lim
Re(λ)→0

max
j∈[0,α]

R− 1 + ej Re(λ) −Re(j−α) Re(λ) + ej Re(λ)hRe(λ)

(R− 1) Re(λ)

= max
j∈[0,α]

h+Rα + j(1−R)

R− 1

=
h+Rα

R− 1
,
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since R > 1 in this case. As a result, (1.1) is HUS with HUS constant at most KC =
h+Rα

R− 1
, for R > 1 and Re(λ) = 0. In either instance, case (ii) holds.

Case (iii). Finally, let λ = −1

h
+

1

α
Wz

(
Rα

h
e
α
h

+iθ

)
for θ ∈ (−π, π] and R ∈ (0, 1),

let the exponential function be given by (1.3), and let φ satisfy (1.2). Using R ∈ (0, 1)
and (3.4), as well as t = k(α + h) + j for j ∈ [0, α], we can modify (3.4) to get∫ t

0

∆s

|eλ(σ(s), 0)|
=
R(1−Rk)(1− e−αRe(λ))

Rk(1−R) Re(λ)
+
h(1−Rk)

Rk(1−R)
+

1− e−j Re(λ)

Rk Re(λ)
. (3.5)

If φ satisfies the perturbed equation (1.2), then φ is again given as in (1.5). Let x be a
solution of (1.1) with form (1.4), where

x0 = φ0 − ε
(

h

1−R
+
R(1− e−αRe(λ))

(1−R) Re(λ)

)
;

note that both fractions in the parentheses here are positive, due to R ∈ (0, 1) and
Re(λ) < 0 in this case. Employing (3.5) with t = k(α + h) + j, we see that

|φ(t)− x(t)| = |eλ(t, 0)|
∣∣∣∣φ0 +

∫ t

0

q(s)

eλ(σ(s), 0)
∆s

−
(
φ0 − ε

(
h

1−R
+
R(1− e−αRe(λ))

(1−R) Re(λ)

))∣∣∣∣
= |eλ(t, 0)|

∣∣∣∣∫ t

0

q(s)

eλ(σ(s), 0)
∆s+ ε

(
h

1−R
+
R(1− e−αRe(λ))

(1−R) Re(λ)

)∣∣∣∣
≤ ε|eλ(t, 0)|

(∫ t

0

1

|eλ(σ(s), 0)|
∆s+

h

1−R
+
R(1− e−αRe(λ))

(1−R) Re(λ)

)
= εRkej Re(λ)

(
R(1− e−αRe(λ))

Rk(1−R) Re(λ)
+

h

Rk(1−R)
+

1− e−j Re(λ)

Rk Re(λ)

)
= εej Re(λ)

(
R(1− e−αRe(λ))

(1−R) Re(λ)
+

h

1−R
+

1− e−j Re(λ)

Re(λ)

)
≤ ε

(
1−R +Re(j−α) Re(λ) − ej Re(λ)(1 + hRe(λ))

(−1 +R) Re(λ)

)

for j ∈ [0, α], asR ∈ (0, 1). Therefore (1.1) has HUS for λ = −1

h
+

1

α
Wz

(
Rα

h
e
α
h

+iθ

)
for R ∈ (0, 1), with HUS constant given by at most K = |KC| given in (3.3), for KC as
in (3.2). This ends the proof.

Remark 3.2. In Figure 3.1, we illustrate the effects of an increasing jump size h, relative
to α, on the eigenvalues λ as parameterized curves in the complex plane. Here, α = 1,
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Figure 3.1: Delta case: Let α = 1, and let λ be as in (3.1), for all θ ∈ (−π, π] and z =

−1 (orange), z = 0 (cyan), z = 1 (blue). Let R =
1

2
(left-hand curve and oval), R = 1

(red middle curve, unstable manifold), and R = 2 (right-hand curve). Left Graph:
h = 3.0 The parameterized values of λ ∈ C before the bifurcation in the unstable

manifold has occurred. Middle Graph: h =
1

W0(e−1)
≈ 3.59112 (the bifurcation

value) The unstable manifold is the homoclinic orbit given by the parameterized graph
of λ = −W0(e−1) + Wz(e

1+iθ). Right Graph: h = 3.7 The parameterized values of
λ ∈ C after the bifurcation in the unstable manifold has occurred. End of caption.

and h increases from h = 3.0, through the bifurcation value of h =
1

W0(e−1)
, to

h = 3.7, after the bifurcation in the parameter space has occurred. In Figure 3.2, the
complex eigenvalues for the nabla equation are likewise illustrated.

Remark 3.3. For λ as given in (3.1), note that R = |1 + hλ| eαRe(λ). As the jump size

h > 0 approaches zero with α > 0 fixed, R = eαRe(λ) implies Re(λ) =
1

α
lnR. If

we write λ = Re(λ) + Im(λ)i, where Re and Im are the real and imaginary parts of

λ ∈ C\
{
−1

h

}
, respectively, then

R cos(θ) = eαRe(λ) [(1 + hRe(λ)) cos(Im(λ))− h Im(λ) sin(Im(λ))] ,
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R sin(θ) = eαRe(λ) [(1 + hRe(λ)) sin(Im(λ)) + h Im(λ) cos(Im(λ))] ;

taking h to zero, we see that sin(θ) = sin(Im(λ)) and cos(θ) = cos(Im(λ)). Summa-
rizing, we have that for fixed α > 0,

lim
h→0+

Pα,h = R

and
lim
h→0+

λ =
1

α
lnR + (θ + 2πz)i, R > 0, θ ∈ (−π, π], z ∈ Z.

In particular, note that for R = 1, the eigenvalues λ in (3.1) converge to purely imag-
inary points in the complex plane as the jump size h goes to zero, which corresponds
to the known fact that the Hyers–Ulam instability region for (1.1) with T = R is the
imaginary axis. See Theorem 3.1(i).

Remark 3.4. Similar to Remark 2.3 earlier, fix the jump size h >
α

W0(e−1)
, and let α

tend to 0. Then, lim
α→0

Pα,h = hZ, and we have the following cases from Theorem 3.1,
with α = 0, along the principal branch of the Lambert W function, W0.

(i) If R = 1, then (1.1) is not Hyers–Ulam stable.

(ii) If R > 1, then (1.1) is Hyers–Ulam stable, with HUS constant at most

KC =
h

R− 1
=

h

|1 + hλ| − 1
.

(iii) If 0 < R < 1, then (1.1) is Hyers–Ulam stable, with HUS constant at most

K = |KC| =
h

1−R
=

h

1− |1 + hλ|
.

Thus, we recover the (best) K value found in the hZ case in [4, Theorem 2.6]. Since

|KC| =
h

||1 + hλ| − 1|
=

1

|Reh(λ)|
, which is the absolute value of the reciprocal of the

Hilger-real part of λ, we can view K−1
C as the Pα,h-real part of λ in some sense.

Remark 3.5. Consider the nabla case with λ ∈ C\{1/h} on the time scale Pα,h, for
continuous interval size α > 0 and discrete jump size h > 0. With the nabla ex-
ponential function given in (2.2), set the base of the exponential function as follows,
(1− hλ)−1eαλ = Reiθ, for R > 0, i =

√
−1, and θ ∈ (−π, π]. Let w =

α

h
−αλ. Then,

the following are equivalent:

(1− hλ)−1eαλ = Reiθ(α
h
− αλ

)
e−αλ =

α

hR
e−iθ
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Figure 3.2: Nabla case: Let α = 1, and let λ be as in (3.6), for all θ ∈ (−π, π]

and z = −1 (black), z = 0 (cyan), z = 1 (brown). Let R =
1

2
(left-hand

curve), R = 1 (orange/red/pink middle curves, unstable manifold), and R = 2
(oval and right-hand curve). Left Graph: h = 3.0 The parameterized values of
λ ∈ C before the bifurcation in the unstable manifold has occurred. Middle Graph:

h =
1

W0(e−1)
≈ 3.59112 (the bifurcation value) The unstable manifold is the ho-

moclinic orbit given by the parameterized graph of λ = −W0(e−1) +Wz(e
1+iθ). Right

Graph: h = 3.7 The parameterized values of λ ∈ C after the bifurcation in the unsta-
ble manifold has occurred. End of caption.

wew =
α

hR
e
α
h
−iθ

w = Wz

( α

hR
e
α
h
−iθ
)
,

so that

λ =
1

h
− 1

α
Wz

( α

hR
e
α
h
−iθ
)
, θ ∈ (−π, π], R > 0, h > 0, (3.6)

for various branches of the Lambert W function in the complex plane determined by
z ∈ Z, for θ ∈ (−π, π], with a branch cut along the negative real axis, and principal
branch W0. Compare the following theorem with Theorem 3.1.
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Theorem 3.6 (Nabla equation). Let λ ∈ C\{1/h} have the form (3.6), and let Wz be
the Lambert W function for any z ∈ Z.

(i) If R = 1, then (2.4) is not Hyers–Ulam stable.

(ii) If R > 1, then (2.4) is Hyers–Ulam stable, with HUS constant at most

K̂C := max
j∈[0,α]

R− 1−Re(j−α) Re(λ) + ej Re(λ) (1 +RhRe(λ))

(R− 1) Re(λ)
, (3.7)

or K̂C =
R(h+ α)

R− 1
if Re(λ) = 0.

(iii) If 0 < R < 1, then (2.4) is Hyers–Ulam stable, with HUS constant at most

K =
∣∣∣K̂C

∣∣∣ := max
j∈[0,α]

R− 1−Re(j−α) Re(λ) + ej Re(λ)(1 +RhRe(λ))

(1−R) Re(λ)
. (3.8)

4 Related Time Scales
Related to the time scale T = Pα,h are time scales with continuous intervals broken up
by isolated points. For example, consider the time scale

T = Pα,β,γ,δ :=
∞⋃
k=0

[k(α, β, γ, δ), k(α, β, γ, δ) + α]

∪{k(α, β, γ, δ) + (α + β)} ∪ {k(α, β, γ, δ) + (α + β + γ)},

which one can think of as dash-dot-dot, dash-dot-dot, and so on, a continuous dash or in-
terval of length α, followed by jumps of length β, γ to two isolated points, respectively,
followed by a jump of length δ to the next continuous interval, repeated.

Theorem 4.1. Let Ik = [k(α, β, γ, δ), k(α, β, γ, δ) + α]. The solution to

x∆(t) = λx(t), t ∈ Pα,β,γ,δ,

is given by the exponential function

eλ(t, 0) =


(

(1 + βλ)(1 + γλ)(1 + δλ)

e(β+γ+δ)λ

)k
eλt if t ∈ Ik

(1 + βλ)k+1 ((1 + γλ)(1 + δλ))k eαλ(k+1) if t = Tk,α,β

((1 + βλ)(1 + γλ))k+1 (1 + δλ)keαλ(k+1) if t = Tk,α,β,γ

for each fixed k ∈ N0 and t ∈ Pα,β,γ,δ, where Tk,α,β = k(α, β, γ, δ) + (α + β) and
Tk,α,β,γ = k(α, β, γ, δ) + (α + β + γ).

The HUS analysis for this time scale would clearly track with the analysis earlier in
this work, and involve the Lambert W function.
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